Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A box is moved along a straight line by a machine delivering constant power. The distance moved by the body in time \(\mathrm{t}\) is proportional to
PhysicsWork Power EnergyJEE Main
Options:
  • A \(\mathrm{t}^{\frac{1}{2}}\)
  • B \(t^{\frac{3}{4}}\)
  • C \(\mathrm{t}^{\frac{3}{2}}\)
  • D \(\mathrm{t}^2\)
Solution:
2125 Upvotes Verified Answer
The correct answer is: \(\mathrm{t}^{\frac{3}{2}}\)
\(\begin{aligned}
& \text {Hints: } \mathrm{P}=\mathrm{Fv}=\mathrm{m} \cdot \frac{\mathrm{dv}}{\mathrm{dt}} \cdot \mathrm{v} \\
& \int \mathrm{vdv}=\int \mathrm{P} / \mathrm{mdt} ; \quad \frac{\mathrm{v}^2}{2}=\frac{\mathrm{Pt}}{\mathrm{m}} \\
& V=\sqrt{\frac{2 p}{m}} \mathrm{t}^{\frac{1}{2}} ; \frac{\mathrm{dx}}{\mathrm{dt}}=\sqrt{\frac{2 \mathrm{p}}{\mathrm{m}}} \mathrm{t}^{\frac{1}{2}} \\
& \int d x=\sqrt{\frac{2 p}{m}} \int t^{\frac{1}{2}} d t ; \quad x=\sqrt{\frac{2 p}{m}} \frac{t^{\frac{3}{2}}}{\frac{3}{2}}=\frac{2}{3} \sqrt{\frac{2 p}{m}} \mathrm{t}^{\frac{3}{2}} \\
& \mathrm{x} \alpha \mathrm{t}^{\frac{3}{2}} \\
&
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.