Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A bucket containing water is revolved in a vertical circle of radius ' $\mathrm{r}^{\prime}$. To prevent the water from falling down, the minimum frequency of revolution required is
$[\mathrm{g}=$ acceleration due to gravity $]$
PhysicsRotational MotionMHT CETMHT CET 2020 (13 Oct Shift 2)
Options:
  • A $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{g}}{\mathrm{r}}}$
  • B $2 \pi \sqrt{\frac{\mathrm{g}}{\mathrm{r}}}$
  • C $\frac{2 \pi g}{r}$
  • D $\frac{1}{2 \pi} \sqrt{\frac{r}{g}}$
Solution:
2001 Upvotes Verified Answer
The correct answer is: $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{g}}{\mathrm{r}}}$
For minimum velocity at the highest point we should have
$\mathrm{mr} \omega^{2}=\mathrm{mg}$
$\therefore \omega^{2}=\frac{g}{r} \quad$ or $\omega=\sqrt{\frac{g}{r}}$
$\begin{aligned} 2 \pi f &=\sqrt{\frac{g}{r}} \\ f &=\frac{1}{2 \pi} \sqrt{\frac{g}{r}} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.