Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A car is moving with a speed of $30 \mathrm{~ms}^{-1}$ on a circular path of radius $500 \mathrm{~m}$. If its speed is increasing at the rate of $2 \mathrm{~ms}^{-2}$, then find its acceleration.
PhysicsMotion In One DimensionAP EAMCETAP EAMCET 2021 (23 Aug Shift 1)
Options:
  • A $2.0 \mathrm{~ms}^{-2}$
  • B $1.8 \mathrm{~ms}^{-2}$
  • C $9.8 \mathrm{~ms}^{-2}$
  • D $2.7 \mathrm{~ms}^{-2}$
Solution:
1986 Upvotes Verified Answer
The correct answer is: $2.7 \mathrm{~ms}^{-2}$
Given, initial speed, $u=30 \mathrm{~ms}^{-1}$
Radius, $r=500 \mathrm{~m}$
Linear acceleration, $a_T=2 \mathrm{~ms}^{-2}$
Let acceleration be $a$
$$
\because \quad a=\sqrt{a_T^2+a_r^2}
$$

As, $a_r=\frac{u^2}{r}=\frac{(30)^2}{500}$
$$
=\frac{900}{500}=\frac{9}{5} \mathrm{~ms}^{-2}
$$

$$
\begin{aligned}
\therefore \quad a & =\sqrt{2^2+\left(\frac{9}{5}\right)^2}=\sqrt{4+\frac{81}{25}} \\
& =2.69 \mathrm{~ms}^{-2} \simeq 2.7 \mathrm{~ms}^{-2}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.