Search any question & find its solution
Question:
Answered & Verified by Expert
A car of mass ' $m$ ' moving with velocity ' $u$ ' on a straight road in a straight line, doubles its velocity in time $t$. the power delivered by the engine of a car for doubling the velocity is
Options:
Solution:
2759 Upvotes
Verified Answer
The correct answer is:
$\frac{3 \mathrm{mu}^2}{2 \mathrm{t}}$
Initial kinetic energy $\mathrm{k}_1=\frac{1}{2} \mathrm{mu}^2$
Final kinetic energy $\mathrm{k}_2=\frac{1}{2} \mathrm{mu}_2^2=\frac{1}{2} \mathrm{~m}(2 \mathrm{u})^2=\frac{1}{2}\left(4 \mathrm{mu}^2\right)$
$$
\therefore \mathrm{k}_2-\mathrm{k}_1=\frac{3}{2} \mathrm{mu}^2
$$
Change in K.E. is work done
Power, $\mathrm{P}=\frac{\text { workdone }}{\mathrm{t}}=\frac{3 \mathrm{mu}^2}{2 \mathrm{t}}$
Final kinetic energy $\mathrm{k}_2=\frac{1}{2} \mathrm{mu}_2^2=\frac{1}{2} \mathrm{~m}(2 \mathrm{u})^2=\frac{1}{2}\left(4 \mathrm{mu}^2\right)$
$$
\therefore \mathrm{k}_2-\mathrm{k}_1=\frac{3}{2} \mathrm{mu}^2
$$
Change in K.E. is work done
Power, $\mathrm{P}=\frac{\text { workdone }}{\mathrm{t}}=\frac{3 \mathrm{mu}^2}{2 \mathrm{t}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.