Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A car of mass ' $m$ ' moving with velocity ' $u$ ' on a straight road in a straight line, doubles its velocity in time $t$. the power delivered by the engine of a car for doubling the velocity is
PhysicsWork Power EnergyMHT CETMHT CET 2021 (22 Sep Shift 1)
Options:
  • A $\frac{3 \mathrm{mu}^2}{2 \mathrm{t}}$
  • B $\frac{\mathrm{mu}^2}{2 \mathrm{t}}$
  • C $\frac{2 \mathrm{mu}^2}{\mathrm{t}}$
  • D $\frac{3 \mathrm{mu}^2}{\mathrm{t}}$
Solution:
2759 Upvotes Verified Answer
The correct answer is: $\frac{3 \mathrm{mu}^2}{2 \mathrm{t}}$
Initial kinetic energy $\mathrm{k}_1=\frac{1}{2} \mathrm{mu}^2$
Final kinetic energy $\mathrm{k}_2=\frac{1}{2} \mathrm{mu}_2^2=\frac{1}{2} \mathrm{~m}(2 \mathrm{u})^2=\frac{1}{2}\left(4 \mathrm{mu}^2\right)$
$$
\therefore \mathrm{k}_2-\mathrm{k}_1=\frac{3}{2} \mathrm{mu}^2
$$
Change in K.E. is work done
Power, $\mathrm{P}=\frac{\text { workdone }}{\mathrm{t}}=\frac{3 \mathrm{mu}^2}{2 \mathrm{t}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.