Search any question & find its solution
Question:
Answered & Verified by Expert
A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.
Solution:
2284 Upvotes
Verified Answer
$$
\begin{aligned}
&\text { } \mathrm{P}(\mathrm{King})=\frac{4}{52} ; \mathrm{P}(\text { Heart })=\frac{13}{52} \\
&\mathrm{P}(\text { Red })=\frac{26}{52} ; \mathrm{P}(\mathrm{King} \cap \mathrm{Heart})=\frac{1}{52} \\
&\mathrm{P}(\text { Heart } \cap \text { Red })=\frac{13}{52} ; \quad \mathrm{P}(\mathrm{Red} \cap \mathrm{King})=\frac{2}{52} \\
&\mathrm{P}(\text { Heart } \cap \text { Red } \cap \mathrm{King})=\frac{1}{52} \\
&\mathrm{Required} \text { Prob. }=\{\mathrm{P}(\mathrm{K})+\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{R})-\mathrm{P}(\mathrm{K} \cap \mathrm{H}) \\
&\quad-\mathrm{P}(\mathrm{H} \cap \mathrm{R})-\mathrm{P}(\mathrm{R} \cap \mathrm{K})+\mathrm{P}(\mathrm{H} \cap \mathrm{K} \cap \mathrm{R}) \\
&=\frac{4}{52}+\frac{13}{52}+\frac{26}{52}-\frac{1}{52}-\frac{13}{52}-\frac{2}{52}+\frac{1}{52}=\frac{28}{52}=\frac{7}{13}
\end{aligned}
$$
\begin{aligned}
&\text { } \mathrm{P}(\mathrm{King})=\frac{4}{52} ; \mathrm{P}(\text { Heart })=\frac{13}{52} \\
&\mathrm{P}(\text { Red })=\frac{26}{52} ; \mathrm{P}(\mathrm{King} \cap \mathrm{Heart})=\frac{1}{52} \\
&\mathrm{P}(\text { Heart } \cap \text { Red })=\frac{13}{52} ; \quad \mathrm{P}(\mathrm{Red} \cap \mathrm{King})=\frac{2}{52} \\
&\mathrm{P}(\text { Heart } \cap \text { Red } \cap \mathrm{King})=\frac{1}{52} \\
&\mathrm{Required} \text { Prob. }=\{\mathrm{P}(\mathrm{K})+\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{R})-\mathrm{P}(\mathrm{K} \cap \mathrm{H}) \\
&\quad-\mathrm{P}(\mathrm{H} \cap \mathrm{R})-\mathrm{P}(\mathrm{R} \cap \mathrm{K})+\mathrm{P}(\mathrm{H} \cap \mathrm{K} \cap \mathrm{R}) \\
&=\frac{4}{52}+\frac{13}{52}+\frac{26}{52}-\frac{1}{52}-\frac{13}{52}-\frac{2}{52}+\frac{1}{52}=\frac{28}{52}=\frac{7}{13}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.