Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A Carnot engine absorbs $1000 \mathrm{~J}$ of heat energy from a reservoir at $127^{\circ} \mathrm{C}$ and rejects $600 \mathrm{~J}$ of heat energy during each cycle. The efficiency of engine and temperature of sink will be:
PhysicsThermodynamicsJEE MainJEE Main 2014 (12 Apr Online)
Options:
  • A
    $20 \%$ and $-43^{\circ} \mathrm{C}$
  • B
    $40 \%$ and $-33^{\circ} \mathrm{C}$
  • C
    $50 \%$ and $-20^{\circ} \mathrm{C}$
  • D
    $70 \%$ and $-10^{\circ} \mathrm{C}$
Solution:
1437 Upvotes Verified Answer
The correct answer is:
$40 \%$ and $-33^{\circ} \mathrm{C}$
Given: $\mathrm{Q}_1=1000 \mathrm{~J}$
$$
\begin{aligned}
&\mathrm{Q}_2=600 \mathrm{~J} \\
&\mathrm{~T}_1=127^{\circ} \mathrm{C}=400 \mathrm{~K} \\
&\mathrm{~T}_2=? \\
&\eta=?
\end{aligned}
$$
Efficiency of carnot engine,
$$
\begin{aligned}
&\eta=\frac{W}{Q_1} \times 100 \% \\
&\text { or, } \eta=\frac{Q_2-Q_1}{Q_1} \times 100 \%
\end{aligned}
$$
or, $\eta=\frac{\mathrm{Q}_2-\mathrm{Q}_1}{\mathrm{Q}_1} \times 100 \%$
or, $\eta=\frac{1000-600}{1000} \times 100 \%$
$$
\eta=40 \%
$$
Now, for carnot cycle $\frac{\mathrm{Q}_2}{\mathrm{Q}_1}=\frac{\mathrm{T}_2}{\mathrm{~T}_1}$
$$
\begin{aligned}
&\frac{600}{1000}=\frac{\mathrm{T}_2}{400} \\
&\mathrm{~T}_2=\frac{600 \times 400}{1000}=240 \mathrm{~K}=240-273 \\
&\therefore \mathrm{T}_2=-33^{\circ} \mathrm{C}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.