Search any question & find its solution
Question:
Answered & Verified by Expert
A cell of emf $10 \mathrm{~V}$ and internal resistance $3 \Omega$ is connected in parallel with another cell of emf $7 \mathrm{~V}$ and internal resistance $\frac{3}{5} \Omega$, such that their positive terminals are joined together and so their are negative terminals. Their positive terminals are joined with the negative terminal and their negative terminal is joined with the positive terminal of a third cell of emf $20 \mathrm{~V}$ with internal resistance $2 \Omega$. The combination can be replaced by a battery of emf $E$ and internal resistance $r$, then the values of $E$ and $R$ are respectively
Options:
Solution:
1478 Upvotes
Verified Answer
The correct answer is:
$E=2 V, r=0.4 \Omega$
$$
\text { Circuit according to the question will be }
$$

All three cells are connected in parallel, but $B_3$ connected wrongly, so equivalent emf and equivalent internal resistance is given by
$$
\begin{aligned}
& \frac{E_{\mathrm{eq}}}{r_{\mathrm{eq}}}=\frac{B_1}{r_1}+\frac{B_2}{r_2}-\frac{B_3}{r_3} \\
& \frac{E_{\mathrm{eq}}}{r_{\mathrm{eq}}}=\frac{10}{3}+\frac{7}{3 / 5}-\frac{20}{2}=\frac{10}{3}+\frac{35}{3}-10 \\
& \frac{E_{\mathrm{eq}}}{r_{\mathrm{eq}}}=5
\end{aligned}
$$
Also, $\frac{1}{r_{\mathrm{eq}}}=\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3} \Rightarrow \frac{1}{r_{\mathrm{eq}}}=\frac{1}{3}+\frac{5}{3}+\frac{1}{2}$
$$
\Rightarrow \quad r_{\text {eq }}=0.4 \Omega
$$
Putting the value req in Eq. (i), we get
$$
\Rightarrow \quad \frac{E_{\text {eq }}}{0.4}=5 \Rightarrow B_{\text {eq }}=2 \mathrm{~V}
$$
\text { Circuit according to the question will be }
$$

All three cells are connected in parallel, but $B_3$ connected wrongly, so equivalent emf and equivalent internal resistance is given by
$$
\begin{aligned}
& \frac{E_{\mathrm{eq}}}{r_{\mathrm{eq}}}=\frac{B_1}{r_1}+\frac{B_2}{r_2}-\frac{B_3}{r_3} \\
& \frac{E_{\mathrm{eq}}}{r_{\mathrm{eq}}}=\frac{10}{3}+\frac{7}{3 / 5}-\frac{20}{2}=\frac{10}{3}+\frac{35}{3}-10 \\
& \frac{E_{\mathrm{eq}}}{r_{\mathrm{eq}}}=5
\end{aligned}
$$
Also, $\frac{1}{r_{\mathrm{eq}}}=\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3} \Rightarrow \frac{1}{r_{\mathrm{eq}}}=\frac{1}{3}+\frac{5}{3}+\frac{1}{2}$
$$
\Rightarrow \quad r_{\text {eq }}=0.4 \Omega
$$
Putting the value req in Eq. (i), we get
$$
\Rightarrow \quad \frac{E_{\text {eq }}}{0.4}=5 \Rightarrow B_{\text {eq }}=2 \mathrm{~V}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.