Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A circuit containing resistance $\mathrm{R}_1$, inductance $\mathrm{L}_1$ and capacitance $\mathrm{C}_1$ connected in series resonates at the same frequency ' $\mathrm{f}_{\mathrm{r}}$ ' as another circuit containing $\mathrm{R}_2, \mathrm{~L}_2$ and $\mathrm{C}_2$ in series. If two circuits are connected in series, then the new frequency at resonance is
PhysicsAlternating CurrentMHT CETMHT CET 2021 (24 Sep Shift 1)
Options:
  • A $\frac{3}{4} f_r$
  • B $\frac{3}{2} f_r$
  • C $2 \mathrm{f}_{\mathrm{r}}$
  • D $\mathrm{f}_{\mathrm{r}}$
Solution:
2387 Upvotes Verified Answer
The correct answer is: $\mathrm{f}_{\mathrm{r}}$
When $\mathrm{R}_1, \mathrm{~L}_1$ and $\mathrm{C}_1$ are connected in series the resonant (angular) frequency is given by
$$
\omega_{\mathrm{r}}=\frac{1}{\sqrt{\mathrm{L}_1 \cdot \mathrm{C}_1}}
$$
Also, when $\mathrm{R}_2, \mathrm{~L}_2, \mathrm{C}_2$ are connected in series
Then $\omega_{\mathrm{r}}=\frac{1}{\sqrt{\mathrm{L}_2 \cdot \mathrm{C}_2}}$
By (1) and (2): $\mathrm{L}_1 \mathrm{C}_1=\mathrm{L}_2 \mathrm{C}_2$
If the two circuits are connected in series then the equivalent inductance is given by $\mathrm{L}=\mathrm{L}_1+\mathrm{L}_2$ and the equivalent capacitance is given by
$$
\begin{aligned}
& \mathrm{C}=\frac{\mathrm{C}_1 \mathrm{C}_2}{\mathrm{C}_1+\mathrm{C}_2} \\
& \therefore \mathrm{LC}=\left(\mathrm{L}_1+\mathrm{L}_2\right) \cdot \frac{\mathrm{C}_1 \mathrm{C}_2}{\mathrm{C}_1+\mathrm{C}_2} \\
& =\frac{\mathrm{L}_1 \mathrm{C}_1 \mathrm{C}_2+\mathrm{L}_2 \mathrm{C}_1 \mathrm{C}_2}{\mathrm{C}_1+\mathrm{C}_2}\left[\because \mathrm{L}_1 \mathrm{C}_1=\mathrm{L}_2 \mathrm{C}_2\right] \\
& =\frac{\mathrm{L}_2 \mathrm{C}_2\left(\mathrm{C}_2+\mathrm{C}_1\right)}{\mathrm{C}_1+\mathrm{C}_2}=\mathrm{L}_2 \mathrm{C}_2 \\
& \therefore \omega=\frac{1}{\sqrt{\mathrm{L}_2 \mathrm{C}_2}}=\omega_{\mathrm{r}}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.