Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A coil having 100 turns is wound tightly in the form of a spiral with inner and outer radii $1 \mathrm{~cm}$ and $2 \mathrm{~cm}$, respectively. When a current 1 A passes through the coil, the magnetic field at the centre of the coil is
PhysicsMagnetic Effects of CurrentTS EAMCETTS EAMCET 2020 (11 Sep Shift 1)
Options:
  • A $2 \pi \ln (2) \mathrm{mT}$
  • B $\frac{\pi}{2} \ln (2) \mathrm{mT}$
  • C $\pi \ln (2) \mathrm{mT}$
  • D $\sqrt{2} \pi \ln (2) \mathrm{mT}$
Solution:
1056 Upvotes Verified Answer
The correct answer is: $2 \pi \ln (2) \mathrm{mT}$
Consider a small circular element of thickness $d r$ at a distance $r$ from the centre of spiral as shown in the figure,


Total number of turns in this element $=\frac{N}{b-a} d r$ Current passing through this element,
$i=\frac{N}{b-a} d r I$
$\therefore$ Magnetic field at the centre of spiral due to this element is given as
$d B=\frac{\mu_0 i}{2 r}=\frac{\mu_0}{2 r} \cdot \frac{N I}{b-a} d r$
$\therefore$ Total magnetic field,
$B=\int d B=nt_a^b \frac{\mu_0 N I}{2(b-a)} \cdot \frac{d r}{r}$
$\Rightarrow \quad B=\frac{\mu_0 N I}{2(b-a)} \ln \left(\frac{b}{a}\right)$
Given, $N=100, I=1 \mathrm{~A}, a=1 \mathrm{~cm}=10^{-2} \mathrm{~m}$, $b=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}$
$\therefore \quad B=\frac{4 \pi \times 10^{-7} \times 100 \times 1}{2\left(2 \times 10^{-2}-1 \times 10^{-2}\right)} \ln \left(\frac{2 \times 10^{-2}}{1 \times 10^{-2}}\right)$
$=2 \pi \times 10^{-3} \ln (2)$
$=2 \pi \ln (2) \times 10^{-3} \mathrm{~T}$
$=2 \pi \ln (2) \mathrm{mT}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.