Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A coin is tossed five times. What is the probability that heads are observed more than three times?
MathematicsProbabilityNDANDA 2015 (Phase 2)
Options:
  • A $\frac{3}{16}$
  • B $\frac{5}{16}$
  • C $\frac{1}{2}$
  • D $\frac{3}{32}$
Solution:
2472 Upvotes Verified Answer
The correct answer is: $\frac{3}{16}$
Let P denote the probability of getting head in a single toss of a coin.
$\mathrm{p}=\frac{1}{2} \Rightarrow \mathrm{q}=\frac{1}{2}$
Let $X$ denote the no. of heads in 5 tosses of a coin. then, $\mathrm{X}$ is a binomial variate with parameters; $\mathrm{n}=5 \&$
$\mathrm{p}=\frac{1}{2}$.
$\therefore$ Req. probability $=\mathrm{P}(\mathrm{x}>3)$
$=1-\mathrm{P}(\mathrm{x} \leq 3)$
$=1-[\mathrm{P}(\mathrm{x}=0)+\mathrm{P}(\mathrm{x}=1)+\mathrm{P}(\mathrm{x}=2)+\mathrm{P}(\mathrm{x}=3)]$
$=1-\left[{ }^{5} \mathrm{C}_{0}+{ }^{5} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{3}\right] \frac{1}{2^{5}}$
$=1-[1+5+10+10] \frac{1}{32}$
$=\frac{32}{32}-\frac{26}{32}=\frac{6}{32}=\frac{3}{16}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.