Search any question & find its solution
Question:
Answered & Verified by Expert
A complex number $z$ among the following which satisfy $z^3+27 i=0$ is
Options:
Solution:
1482 Upvotes
Verified Answer
The correct answer is:
$(3 \sqrt{3}-3 i) / 2$
Given, $z^3+27 i=0$
$\begin{aligned} & \Rightarrow \quad z^3-(3 i)^3=0 \\ & \Rightarrow \quad(z-3 i)\left(z^2+3 z i-9\right)=0\end{aligned}$
If $\quad z-3 i=0 \Rightarrow z=3 i$
If $z^2+3 z i-9=0$
$\begin{aligned} & \Rightarrow \quad z=\frac{-3 i \pm \sqrt{-9+36}}{2}=\frac{-3 i \pm 3 \sqrt{3}}{2} \\ & \Rightarrow \quad z=\frac{3 \sqrt{3}-3 i}{2}, \frac{-3 \sqrt{3}-3 i}{2}\end{aligned}$
$\begin{aligned} & \Rightarrow \quad z^3-(3 i)^3=0 \\ & \Rightarrow \quad(z-3 i)\left(z^2+3 z i-9\right)=0\end{aligned}$
If $\quad z-3 i=0 \Rightarrow z=3 i$
If $z^2+3 z i-9=0$
$\begin{aligned} & \Rightarrow \quad z=\frac{-3 i \pm \sqrt{-9+36}}{2}=\frac{-3 i \pm 3 \sqrt{3}}{2} \\ & \Rightarrow \quad z=\frac{3 \sqrt{3}-3 i}{2}, \frac{-3 \sqrt{3}-3 i}{2}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.