Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A complex number $z$ among the following which satisfy $z^3+27 i=0$ is
MathematicsComplex NumberAP EAMCETAP EAMCET 2022 (08 Jul Shift 2)
Options:
  • A $(3 \sqrt{3}-3 i) / 2$
  • B $-3 i$
  • C $(3 \sqrt{3}+3 i) / 2$
  • D $(-3 \sqrt{3}+3 i) / 2$
Solution:
1482 Upvotes Verified Answer
The correct answer is: $(3 \sqrt{3}-3 i) / 2$
Given, $z^3+27 i=0$
$\begin{aligned} & \Rightarrow \quad z^3-(3 i)^3=0 \\ & \Rightarrow \quad(z-3 i)\left(z^2+3 z i-9\right)=0\end{aligned}$
If $\quad z-3 i=0 \Rightarrow z=3 i$
If $z^2+3 z i-9=0$
$\begin{aligned} & \Rightarrow \quad z=\frac{-3 i \pm \sqrt{-9+36}}{2}=\frac{-3 i \pm 3 \sqrt{3}}{2} \\ & \Rightarrow \quad z=\frac{3 \sqrt{3}-3 i}{2}, \frac{-3 \sqrt{3}-3 i}{2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.