Search any question & find its solution
Question:
Answered & Verified by Expert
(a) Consider circuit in figure. How much energy is absorbed by electrons from the initial state of no current (Ignore thermal motion) to the state of drift velocity?

(b) Electrons give up energy at the rate of $\mathrm{RI}^2$ per second to the thermal energy. What time scale would number associate with energy in problem (a)? $\mathrm{n}=$ number of electron $/$ volume $=10^{29} / \mathrm{m}^3$. Length of circuit $=10 \mathrm{~cm}$ cross-section $=\mathrm{A}=(1 \mathrm{~mm})^2$.

(b) Electrons give up energy at the rate of $\mathrm{RI}^2$ per second to the thermal energy. What time scale would number associate with energy in problem (a)? $\mathrm{n}=$ number of electron $/$ volume $=10^{29} / \mathrm{m}^3$. Length of circuit $=10 \mathrm{~cm}$ cross-section $=\mathrm{A}=(1 \mathrm{~mm})^2$.
Solution:
2111 Upvotes
Verified Answer
(a) ByOhm's law,
$$
\begin{aligned}
&\mathrm{V}=\mathrm{IR}, \\
&\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}} \\
&\mathrm{I}=6 \mathrm{~V} / 6 \Omega=1 \mathrm{~A}
\end{aligned}
$$
The current in a conductor and drift velocity of electrons are related as $i=n e \mathrm{Av}_{\mathrm{d}}$ where $\mathrm{V}_{\mathrm{d}}$ is drift speed of electrons and $\mathrm{n}$ is number density of electrons.
$$
I=n e A v_d
$$
So, drift velocity $v_d=\frac{i}{\text { neA }}$
As given that,
$\mathrm{n}$ (number of electron/volume) $=10^{29} / \mathrm{m}^3$
length of circuit $=10 \mathrm{~cm}$, cross-section area $(\mathrm{A})=(1 \mathrm{~mm})^2$, $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31}$
On substituting the values
$$
\begin{aligned}
\mathrm{v}_{\mathrm{d}} &=\frac{1}{10^{29} \times 1.6 \times 10^{-19} \times 10^{-6}} \\
&=\frac{1}{1.6} \times 10^{-4} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$
So, the energy absorbed in the form of $\mathrm{KE}$ is
$$
\begin{gathered}
\mathrm{KE}=\frac{1}{2} \mathrm{~m}_{\mathrm{e}} \mathrm{v}_{\mathrm{d}}^2 \times \mathrm{nAI} \\
=\frac{1}{2} \times 9.1 \times 10^{-31} \times \frac{1}{2.56} \times 10^{29} \times 10^{-8} \times 10^{-6} \times 10^{-1} \\
\text { K.E. }=1.78 \times 10^{-17} \mathrm{~J}
\end{gathered}
$$
(b) Power loss
$$
\begin{aligned}
\mathrm{P}^2 &=\mathrm{I}^2 \mathrm{R} \\
&=6 \times 1^2 \\
&=6 \mathrm{~W}=6 \mathrm{~J} / \mathrm{s}
\end{aligned}
$$
We know that,
$$
\text { (Power loss) } P=\frac{E(\text { K.E. })}{t(\text { time })}
$$
So,
$$
\begin{aligned}
t &=\frac{E}{P} \\
&=\frac{1.78 \times 10^{-17}}{6} \\
&=0.29 \times 10^{-17} \\
& \cong 0.3 \times 10^{-17} \\
&=3 \times 10^{-18} \text { second }
\end{aligned}
$$
$$
\begin{aligned}
&\mathrm{V}=\mathrm{IR}, \\
&\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}} \\
&\mathrm{I}=6 \mathrm{~V} / 6 \Omega=1 \mathrm{~A}
\end{aligned}
$$
The current in a conductor and drift velocity of electrons are related as $i=n e \mathrm{Av}_{\mathrm{d}}$ where $\mathrm{V}_{\mathrm{d}}$ is drift speed of electrons and $\mathrm{n}$ is number density of electrons.
$$
I=n e A v_d
$$
So, drift velocity $v_d=\frac{i}{\text { neA }}$
As given that,
$\mathrm{n}$ (number of electron/volume) $=10^{29} / \mathrm{m}^3$
length of circuit $=10 \mathrm{~cm}$, cross-section area $(\mathrm{A})=(1 \mathrm{~mm})^2$, $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31}$
On substituting the values
$$
\begin{aligned}
\mathrm{v}_{\mathrm{d}} &=\frac{1}{10^{29} \times 1.6 \times 10^{-19} \times 10^{-6}} \\
&=\frac{1}{1.6} \times 10^{-4} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$
So, the energy absorbed in the form of $\mathrm{KE}$ is
$$
\begin{gathered}
\mathrm{KE}=\frac{1}{2} \mathrm{~m}_{\mathrm{e}} \mathrm{v}_{\mathrm{d}}^2 \times \mathrm{nAI} \\
=\frac{1}{2} \times 9.1 \times 10^{-31} \times \frac{1}{2.56} \times 10^{29} \times 10^{-8} \times 10^{-6} \times 10^{-1} \\
\text { K.E. }=1.78 \times 10^{-17} \mathrm{~J}
\end{gathered}
$$
(b) Power loss
$$
\begin{aligned}
\mathrm{P}^2 &=\mathrm{I}^2 \mathrm{R} \\
&=6 \times 1^2 \\
&=6 \mathrm{~W}=6 \mathrm{~J} / \mathrm{s}
\end{aligned}
$$
We know that,
$$
\text { (Power loss) } P=\frac{E(\text { K.E. })}{t(\text { time })}
$$
So,
$$
\begin{aligned}
t &=\frac{E}{P} \\
&=\frac{1.78 \times 10^{-17}}{6} \\
&=0.29 \times 10^{-17} \\
& \cong 0.3 \times 10^{-17} \\
&=3 \times 10^{-18} \text { second }
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.