Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A copper disc of radius $0.1 \mathrm{~m}$ rotates about an axis passing through its centre and perpendicular to its plane with 10 revolutions per second in a uniform transverse magnetic field of $0.1 \mathrm{~T}$. The emf induced across the radius of the disc is
PhysicsElectromagnetic InductionTS EAMCETTS EAMCET 2023 (14 May Shift 1)
Options:
  • A $\frac{\pi}{10} \mathrm{~V}$
  • B $\frac{2 \pi}{10} \mathrm{~V}$
  • C $10 \pi \mathrm{mV}$
  • D $20 \pi \mathrm{mV}$
Solution:
1060 Upvotes Verified Answer
The correct answer is: $10 \pi \mathrm{mV}$
Consider a small radial segment of $\mathrm{dx}$ at a distance from the centre of the disc.
Velocity of this segment, $\mathrm{v}=\omega \mathrm{x}$ emf induced across this segment
$$
\begin{aligned}
& \mathrm{d} \in==\mathrm{Blv} \\
& =\mathrm{B} \mathrm{x} \omega \mathrm{dx}
\end{aligned}
$$

Total emf induced across radius of disc $r$.
$$
\epsilon=\int_0^{\mathrm{r}} \mathrm{B} x \omega \mathrm{dx}=\frac{\mathrm{B} \omega \mathrm{r}^2}{2}
$$

Here, $\mathrm{B}=0.1 \mathrm{~T} \mathrm{w}=10$ revolution $/ \mathrm{s}=20 \pi \mathrm{rads}$. $\mathrm{r}=0.1 \mathrm{~m}$
$$
\begin{aligned}
& \epsilon=\frac{0.1 \times 20 \pi \times(0.1)^2}{2} \\
& =\pi \times 0.1 \times 0.1 \\
& \epsilon=10 \pi \mathrm{mv}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.