Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$A_{(\alpha)}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right], A_{(\beta)}=\left[\begin{array}{cc}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right]$
Which one of the following is correct?
MathematicsMatricesNDANDA 2006 (Phase 1)
Options:
  • A $\mathrm{A}_{(-\alpha)} \mathrm{A}_{(-\beta)}=\mathrm{A}_{(\alpha+\beta)}$
  • B $\mathrm{A}_{(-\alpha)} \mathrm{A}_{(\beta)}=\mathrm{A}_{(\beta-\alpha)}$
  • C $A_{(\alpha)}+A_{(-\beta)}=A_{\{-(\beta-\alpha)\}}$
  • D $A_{(\alpha)}+A_{(\beta)}=A_{(\alpha+\beta)}$
Solution:
1854 Upvotes Verified Answer
The correct answer is: $A_{(\alpha)}+A_{(\beta)}=A_{(\alpha+\beta)}$
As given $\mathrm{A}(\alpha)=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
and $\quad A(\beta)=\left[\begin{array}{cc}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right]$
Hence,
$\mathrm{A}(\alpha) \cdot \mathrm{A}(\beta)=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right]$
$=\left[\begin{array}{cc}\cos \alpha \cos \beta-\sin \alpha \sin \beta & -\cos \alpha \sin \beta-\sin \alpha \cos \beta \\ \sin \alpha \cos \beta+\cos \alpha \sin \beta & \sin \alpha \sin \beta+\cos \alpha \cos \beta\end{array}\right]$
$=\left|\begin{array}{cc}\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\ \sin (\alpha+\beta) & \cos (\alpha+\beta)\end{array}\right|=\mathbf{A}_{(\alpha+\beta)}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.