Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A cup of coffee cools from $150^{\circ} \mathrm{F}$ to $144^{\circ} \mathrm{F}$ in $1 \mathrm{~min}$ in a room temperature at $72^{\circ} \mathrm{F}$. How much time with the coffee take to cool from $110^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ in the same room?
PhysicsThermal Properties of MatterTS EAMCETTS EAMCET 2019 (04 May Shift 2)
Options:
  • A $1.55 \mathrm{~min}$
  • B $2.14 \mathrm{~min}$
  • C $2.89 \mathrm{~min}$
  • D $3.35 \mathrm{~min}$
Solution:
1175 Upvotes Verified Answer
The correct answer is: $2.14 \mathrm{~min}$
Given, in first case, $T_1=150^{\circ} \mathrm{F}, T_2=144^{\circ} \mathrm{F}, t_1=1 \mathrm{~min}$ and room temperature, $T_0=72^{\circ} \mathrm{F}$
According to Newton's law of cooling,
$$
\begin{aligned}
& m c \frac{\left(T_1-T_2\right)}{t_1}=K\left(\frac{T_1+T_2}{2}-T_0\right) \\
& m c\left(\frac{150-144}{1}\right)=K\left(\frac{150+144}{2}-72\right) \\
& 6 m c=75 K
\end{aligned}
$$

In second case, $T^{\prime}{ }_1=110^{\circ} \mathrm{F}, T^{\prime}{ }_2=104^{\circ} \mathrm{F}$ Time $=t_2=$ ?
By Newton's law of cooling, we have
$$
\begin{aligned}
m c\left(\frac{110-104}{t_2}\right) & =K\left(\frac{110+104}{2}-72\right) \\
\frac{6 m c}{t_2} & =35 \mathrm{~K}
\end{aligned}
$$

From Eqs. (i) and (ii), we get,
$$
\begin{aligned}
& \frac{6 m c}{\left(\frac{6 m c}{t_2}\right)}=\frac{75 K}{35 K} \\
\Rightarrow \quad t_2=\frac{15}{7} & =2.14 \mathrm{~min} .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.