Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A cyclotron's oscillator frequency is \( 10 \mathrm{MHz} \) and the operating magnetic field is \( 0.66 \mathrm{~T} \). If the
radius of its dees is \( 60 \mathrm{~cm} \), then the kinetic energy of the proton beam produced by the
accelerator is
PhysicsMagnetic Effects of CurrentKCETKCET 2018
Options:
  • A \( 9 \mathrm{Mev} \)
  • B \( 10 \mathrm{Mev} \)
  • C \( 7 \mathrm{Mev} \)
  • D \( 11 \mathrm{Mev} \)
Solution:
1453 Upvotes Verified Answer
The correct answer is: \( 7 \mathrm{Mev} \)
We know, radius of circular path
$r=\frac{m v}{q B}$
$\Rightarrow v=\frac{q B r}{m} \rightarrow(1)$
Frequency of cyclotron, $f=\frac{q B}{2 \Pi m}$
$\Rightarrow B=\frac{2 \Pi m f}{q} \rightarrow(2)$
Using Eq. (1), kinetic energy $=\frac{1}{2} m v^{2}=\frac{1}{2} m \frac{q^{2} B^{2} r^{2}}{m^{2}}$
Using Eq. (2), kinetic energy $=\frac{1}{2} \frac{q^{2} r^{2}}{m} \frac{(2 \Pi)^{2} m^{2} f^{2}}{q^{2}}=2 \Pi^{2} f^{2} r^{2} m$
Therefore, kinetic energy $=2 \times(3.14)^{2} \times\left(10 \times 10^{6}\right)^{2} \times\left(60 \times 10^{-2}\right)^{2} \times\left(1.67 \times 10^{-27}\right)$
$=1.13 \times 10^{-12} \mathrm{~J}$
Hence, kinetic energy
$=\frac{1.13 \times 10^{-12}}{1.16 \times 10^{-19} \times 10^{6}} \simeq 7.1 \mathrm{MeV} \approx 7 \mathrm{MeV}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.