Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A cylindrical rod has temperature ' $\mathrm{T}_1$ ' and ' $\mathrm{T}_2$ ' at its ends. The rate of flow of heat is ' $\mathrm{Q}_1$ ' $\mathrm{cal} \mathrm{s}^{-1}$. If length and radius of the rod are doubled keeping temperature constant, then the rate of flow of heat ' $Q_2$ ' will be
PhysicsThermal Properties of MatterMHT CETMHT CET 2021 (24 Sep Shift 1)
Options:
  • A $\mathrm{Q}_2=\frac{\mathrm{Q}_1}{2}$
  • B $\mathrm{Q}_2=\frac{\mathrm{Q}_1}{4}$
  • C $\mathrm{Q}_2=4 \mathrm{Q}_1$
  • D $\mathrm{Q}_2=2 \mathrm{Q}_1$
Solution:
1706 Upvotes Verified Answer
The correct answer is: $\mathrm{Q}_2=2 \mathrm{Q}_1$
$\begin{aligned} & \mathrm{Q}_1=\frac{\mathrm{kA}\left(\mathrm{T}_1-\mathrm{T}_2\right)}{\mathrm{L}_1}=\frac{\mathrm{k} \pi \mathrm{r}_1^2\left(\mathrm{~T}_1-\mathrm{T}_2\right)}{\mathrm{L}_1} \\ & \mathrm{Q}_2=\frac{\mathrm{k} \pi \mathrm{r}_2^2\left(\mathrm{~T}_1-\mathrm{T}_2\right)}{\mathrm{L}_2} \\ & \frac{\mathrm{Q}_2}{\mathrm{Q}_1}=\frac{\mathrm{r}_2^2}{\mathrm{r}_1^2} \cdot \frac{\mathrm{L}_1}{\mathrm{~L}_2}=(2)^2 \cdot \frac{1}{2}=2 \\ & \therefore \mathrm{Q}_2=2 \mathrm{Q}_1\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.