Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A direct current of $5 \mathrm{~A}$ is superposed on an alternating current $I=10 \sin \omega t$ flowing through the wire. The effective value of the resulting current will be
PhysicsAlternating CurrentJEE Main
Options:
  • A $(15 / 2) \mathrm{A}$
  • B $5 \sqrt{3} \mathrm{~A}$
  • C $5 \sqrt{5} \mathrm{~A}$
  • D $15 \mathrm{~A}$
Solution:
2862 Upvotes Verified Answer
The correct answer is: $5 \sqrt{3} \mathrm{~A}$
Total carrent, $1=(5+10 \sin \omega \mathrm{t})$

$$

\begin{aligned}

\Rightarrow I_{\text {eff }} &=\left[\frac{\int_{0}^{\mathrm{T}} \mathrm{I}^{2} \mathrm{dt}}{\int_{0}^{\mathrm{T}} \mathrm{dt}}\right]^{1 / 2} \\

&=\left[\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}(5+10 \sin \omega \mathrm{t})^{2} \mathrm{dt}\right]^{1 / 2} \\

&=\left[\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}\left(25+100 \sin \omega \mathrm{t}+100 \sin ^{2} \omega \mathrm{t}\right)\right]^{1 / 2} \\

\text { But, } \quad \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \sin \omega \mathrm{t} \mathrm{dt}=0

\end{aligned}

$$

and

$$

\begin{array}{l}

\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \sin ^{2} \omega \mathrm{t} \mathrm{dt}=\frac{1}{2} \\

\text { So, } \mathrm{I}_{\mathrm{eff}}=\left[25+\frac{1}{2} \times 100\right]^{1 / 2}=5 \sqrt{3} \mathrm{~A}

\end{array}

$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.