Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A disc of radius $R$ and thickness $\frac{R}{6}$ has moment of inertia I about an axis passing through its centre and perpendicular to its plane. Disc is melted and recast into a solid sphere. The moment of inertia of a sphere about its diameter is
PhysicsCenter of Mass Momentum and CollisionMHT CETMHT CET 2023 (09 May Shift 2)
Options:
  • A $\frac{\mathrm{I}}{5}$
  • B $\frac{\mathrm{I}}{6}$
  • C $\frac{\mathrm{I}}{32}$
  • D $\frac{\mathrm{I}}{64}$
Solution:
1825 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{I}}{5}$
M.I. of disc, $I=\frac{1}{2} \mathrm{MR}_{\mathrm{d}}^2$... (i)
M.I. of sphere, $I_{\text {sphere }}=\frac{2}{5} \mathrm{MR}_{\mathrm{s}}^2$... (ii)
$\because \quad$ volume of disc $=$ volume of sphere
$\begin{array}{ll}
\therefore & \pi \mathrm{R}_{\mathrm{d}}^2\left(\frac{\mathrm{R}_{\mathrm{d}}}{6}\right)=\frac{4}{3} \pi \mathrm{R}_{\mathrm{s}}^3 \\
\therefore & \mathrm{R}_{\mathrm{d}}^3=8 \mathrm{R}_{\mathrm{s}}^3 \\
\therefore & \mathrm{R}_{\mathrm{S}}=\frac{\mathrm{R}_{\mathrm{d}}}{2} ... (iii)
\end{array}$
Substitute equation (iii) in equation (ii)
$\begin{aligned}
\therefore \quad \mathrm{I}_{\text {sphere }} & =\frac{2}{5} \mathrm{M}\left(\frac{\mathrm{R}_{\mathrm{d}}}{2}\right)^2=\frac{2}{5} \times \frac{1}{4} \mathrm{MR}_{\mathrm{d}}^2 \\
& =\frac{1}{5}\left(\frac{1}{2} \mathrm{MR}_{\mathrm{d}}^2\right)=\frac{\mathrm{I}}{5}....[from (i)]
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.