Search any question & find its solution
Question:
Answered & Verified by Expert
A disc revolves with a speed of $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$ and has a radius of $15 \mathrm{~cm}$. Two coins are placed at $4 \mathrm{~cm}$ and $14 \mathrm{~cm}$ away from the center of the record. If the coefficient of friction between the coins and the record is $0.15$, which of the coins will revolve with the record?
Solution:
1029 Upvotes
Verified Answer
When the frictional force is sufficient to provide the centripetal force the coin revolves with the disc. Coin would slip the record, if this force is not sufficient.
Force of friction, $f=\mu R=\mu \mathrm{mg}$,
Centripetal force, $m v^2 / r=m r \omega^2$
In order to prevent slipping, $\mu m g \geq m r \omega^2$, i.e. $\mu g \geq r \omega^2$
Case 1: Given, $r=4 \mathrm{~cm}=0.04 \mathrm{~m}$, $n=33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$
$$
\begin{aligned}
&\omega=2 \pi n=2 \times(22 / 7) \times\left(33 \frac{1}{3} \mathrm{rev} / \mathrm{min}\right)=3.49 \mathrm{~s}^{-1} . \\
&\therefore r \omega^2=(.04)(3.49)^2=0.49 \mathrm{~ms}^{-2}
\end{aligned}
$$
and $\mu g=0.15 \times 9.8=1.47 \mathrm{~ms}^{-2}$
$\because \mu g \geq r \omega^2$, hence first coin will rotate with the record.
Case 2: Given, $r=14 \mathrm{~cm}=0.14 \mathrm{~m}$,
and $\omega=3.49 \mathrm{~s}^{-1}$.
$\therefore r \omega^2=(.14)(3.49)^2=1.7 \mathrm{~ms}^{-2}$ and $\mu g$
$=0.15 \times 9.8=1.47 \mathrm{~ms}^{-2}$
$\therefore \mu \mathrm{g}$ is less than $r \omega^2$, hence second coin will not rotate with the record.
Force of friction, $f=\mu R=\mu \mathrm{mg}$,
Centripetal force, $m v^2 / r=m r \omega^2$
In order to prevent slipping, $\mu m g \geq m r \omega^2$, i.e. $\mu g \geq r \omega^2$
Case 1: Given, $r=4 \mathrm{~cm}=0.04 \mathrm{~m}$, $n=33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$
$$
\begin{aligned}
&\omega=2 \pi n=2 \times(22 / 7) \times\left(33 \frac{1}{3} \mathrm{rev} / \mathrm{min}\right)=3.49 \mathrm{~s}^{-1} . \\
&\therefore r \omega^2=(.04)(3.49)^2=0.49 \mathrm{~ms}^{-2}
\end{aligned}
$$
and $\mu g=0.15 \times 9.8=1.47 \mathrm{~ms}^{-2}$
$\because \mu g \geq r \omega^2$, hence first coin will rotate with the record.
Case 2: Given, $r=14 \mathrm{~cm}=0.14 \mathrm{~m}$,
and $\omega=3.49 \mathrm{~s}^{-1}$.
$\therefore r \omega^2=(.14)(3.49)^2=1.7 \mathrm{~ms}^{-2}$ and $\mu g$
$=0.15 \times 9.8=1.47 \mathrm{~ms}^{-2}$
$\therefore \mu \mathrm{g}$ is less than $r \omega^2$, hence second coin will not rotate with the record.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.