Search any question & find its solution
Question:
Answered & Verified by Expert
A donor impurity results in
Options:
Solution:
2089 Upvotes
Verified Answer
The correct answer is:
production of $\mathrm{n}$ -type semiconductor.
$$
\begin{array}{l}
\beta=50 \\
\mathrm{R}_{1}=1 \mathrm{k} \Omega=10^{3} \Omega \\
\mathrm{V}_{\mathrm{i}}=0.01 \mathrm{~V} \\
\mathrm{I}_{\mathrm{e}}=? \\
\beta=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}=50 ; \quad \mathrm{I}_{\mathrm{C}}=50 \times \mathrm{I}_{\mathrm{B}} \\
\mathrm{V}_{\mathrm{i}}=\mathrm{I}_{\mathrm{B}} \times \mathrm{R}_{\mathrm{i}} \\
\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}}=\frac{0.01}{10^{3}}=10^{-5} \\
\therefore \mathrm{I}_{\mathrm{C}}=50 \times 10^{-5}=500 \times 10^{-6} \mathrm{~A}
\end{array}
$$
\begin{array}{l}
\beta=50 \\
\mathrm{R}_{1}=1 \mathrm{k} \Omega=10^{3} \Omega \\
\mathrm{V}_{\mathrm{i}}=0.01 \mathrm{~V} \\
\mathrm{I}_{\mathrm{e}}=? \\
\beta=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}=50 ; \quad \mathrm{I}_{\mathrm{C}}=50 \times \mathrm{I}_{\mathrm{B}} \\
\mathrm{V}_{\mathrm{i}}=\mathrm{I}_{\mathrm{B}} \times \mathrm{R}_{\mathrm{i}} \\
\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}}=\frac{0.01}{10^{3}}=10^{-5} \\
\therefore \mathrm{I}_{\mathrm{C}}=50 \times 10^{-5}=500 \times 10^{-6} \mathrm{~A}
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.