Search any question & find its solution
Question:
Answered & Verified by Expert
A fighter plane, flying horizontally with a speed $360 \mathrm{kmph}$ at an altitude of $500 \mathrm{~m}$ drops a bomb for a target straight ahead of it on the ground. The bomb .should be dropped at what approximate distance ahead of the target ? Assume that acceleration due to gravity $(\mathrm{g})$ is $10 \mathrm{~ms}^{-2}$. Also neglect air drag
Options:
Solution:
2974 Upvotes
Verified Answer
The correct answer is:
$1000 \mathrm{~m}$
Hint:
$v=360 \mathrm{~km} / \mathrm{h}=100 \mathrm{~m} / \mathrm{s} .$
$\mathrm{h}=500 \mathrm{~m}$
$\mathrm{R}=\mathrm{u} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}=100 \times \sqrt{\frac{2 \times 500}{10}}=1000 \mathrm{~m}$
$v=360 \mathrm{~km} / \mathrm{h}=100 \mathrm{~m} / \mathrm{s} .$
$\mathrm{h}=500 \mathrm{~m}$
$\mathrm{R}=\mathrm{u} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}=100 \times \sqrt{\frac{2 \times 500}{10}}=1000 \mathrm{~m}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.