Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
(a) Figure shows a cross-section of a 'light pipe' made of a glass fibre of refractive index 1.68. The outer covering of the pipe is made of a material of refractive index 1.44. What is the range of the angles of the incident rays with the axis of the pipe for which total reflections inside the pipe take place, as shown in the figure.
(b) What is the answer if there is no outer covering of the pipe?

PhysicsRay Optics
Solution:
1690 Upvotes Verified Answer
(a) Refractive index of outer covering,
$\mathrm{n}_1=1.44$
refractive index of glass fibre, $\mathrm{n}_2=1.68$
At the interface of the glass fibre and covering
As, $\mathrm{n}=\frac{\mathrm{n}_2}{\mathrm{n}_1}$, also the critical angle,
$\sin i_c^{\prime}=\frac{1}{n}\left(i_c^{\prime}=\right.$ critical angle $)$ $\therefore \sin i_c^{\prime}=\frac{n_1}{n_2}=\frac{1.44}{1.68}=0.8571$
or, $\sin \mathrm{i}_{\mathrm{c}}^{\mathrm{c}_{\mathrm{c}}}=\sin 59^{\circ} \quad \therefore \mathrm{i}_{\mathrm{c}}^{\prime}=59^{\circ}$
$\therefore \angle \mathrm{r}=90^{\circ}-\angle i_{\mathrm{c}}^{\prime}=90^{\circ}-59^{\circ}=31^{\circ}$
At the air - glassfibre interface
as, $\mathrm{n}=\frac{\sin \mathrm{i}}{\sin \mathrm{r}}, 1.68=\frac{\sin \mathrm{i}}{\sin 31^{\circ}}$
$\therefore \sin \mathrm{i}=1.68 \times \sin 31^{\circ}=1.68 \times 0.5156$
$=0.8662$
$\therefore \sin \mathrm{i}=\sin 60^{\circ} \quad \therefore \mathrm{i}=60^{\circ}$
(b) If there were no outer covering of the pipe,
for air $\mathrm{n}_1=1$, for glass fibre $\mathrm{n}_2=1.68$
$\sin \mathrm{i}_{\mathrm{c}}=\frac{1}{\mathrm{n}}=\frac{\mathrm{n}_1}{\mathrm{n}_2}$
$$
=\frac{1}{1.68}=0.5952 \therefore \mathrm{i}_{\mathrm{c}}=36.5^{\circ} \text {. }
$$
Now, $\mathrm{i}=90^{\circ}$,
$$
\therefore \mathrm{n}=\frac{\sin \mathrm{i}}{\sin \mathrm{r}}, 1.68=\frac{\sin 90^{\circ}}{\sin \mathrm{r}}=\frac{1}{\sin \mathrm{r}}
$$
$$
\begin{aligned}
&\therefore \sin \mathrm{r}=\frac{1}{1.68}=0.5952 \quad \therefore \mathrm{r}=36.5^{\circ} \\
&\therefore \mathrm{i}^{\prime}=90^{\circ}-36.5^{\circ}=53.5^{\circ},
\end{aligned}
$$
Which is greater than $\mathrm{i}_{\mathrm{c}}^{\prime}$.
therefore all incident rays (in range $53.5^{\circ} < \mathrm{i} < 90^{\circ}$ )
will undergo total internal reflection.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.