Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A function $\mathrm{f}$ defined by $\mathrm{f}(\mathrm{x})=\ln \left(\sqrt{x^{2}+1}-x\right)$ is
MathematicsFunctionsNDANDA 2019 (Phase 1)
Options:
  • A an even function
  • B an odd function
  • C Both even and odd function
  • D Neither even nor odd function
Solution:
2294 Upvotes Verified Answer
The correct answer is: an odd function
$\begin{aligned} & f(x)=\ln \left(\sqrt{x^{2}+1}-x\right) \\ & f(-x)=\ln \left(\sqrt{(-x)^{2}+1}-(-x)\right)=\ln \left(\sqrt{x^{2}+1}+x\right) \\ &=\ln \left(\frac{\left(\sqrt{x^{2}+1}+x\right)\left(\sqrt{x^{2}+1}-x\right)}{\sqrt{x^{2}+1}-x}\right) \\ &=\ln \left(\frac{x^{2}+1-x^{2}}{\sqrt{x^{2}+1}-x}\right)=\ln \left(\frac{1}{\sqrt{x^{2}+1}-x}\right) \\ &=-\ln \left(\sqrt{x^{2}+1}-x\right)=-f(x) \end{aligned}$
So, $\mathrm{f}(\mathrm{x})$ is odd function.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.