Search any question & find its solution
Question:
Answered & Verified by Expert
A given quantity of metal is to be cast into a half cylinder (i,e, with a rectangular base and semicircular ends). If the total surface area is to be minimum, then the ratio of the height of the half cylinder to the diameter of the semicircular ends is
Options:
Solution:
2643 Upvotes
Verified Answer
The correct answer is:
$\pi:(\pi+2)$
Volume of half cylinder with height ${ }^{\prime} 1^{\prime}$ and radius ' $\mathrm{r}$ '
$=\frac{1}{2} \pi r^{2} l$
Surface area of half cylinder.

$S=l \times 2 r+2\left(\frac{1}{2} \pi r^{2}\right)+2\left(\frac{1}{2} \pi r l\right)$
$S=2 r l+\pi r^{2}+\pi r l$
$S=\frac{4 V}{\pi r}+\frac{\pi \cdot 2 V}{\pi r}+\pi r^{2} \quad($ from $(1))$
$\frac{d s}{d r} \Rightarrow \frac{-4 V}{\pi r^{2}}-\frac{2 V}{r^{2}}+2 \pi r=0$
$\Rightarrow 2 \pi r=\frac{4 V}{\pi r^{2}}+\frac{2 V}{r^{2}}$
$\Rightarrow 2 \pi r=\frac{4 . \pi r^{2} l}{2 \pi r^{2}}+\frac{2}{r^{2}} \cdot \frac{1}{2} \pi r^{2} l$
$\Rightarrow \frac{l}{2 r}=\frac{\pi}{\pi+2}$
$=\frac{1}{2} \pi r^{2} l$
Surface area of half cylinder.

$S=l \times 2 r+2\left(\frac{1}{2} \pi r^{2}\right)+2\left(\frac{1}{2} \pi r l\right)$
$S=2 r l+\pi r^{2}+\pi r l$
$S=\frac{4 V}{\pi r}+\frac{\pi \cdot 2 V}{\pi r}+\pi r^{2} \quad($ from $(1))$
$\frac{d s}{d r} \Rightarrow \frac{-4 V}{\pi r^{2}}-\frac{2 V}{r^{2}}+2 \pi r=0$
$\Rightarrow 2 \pi r=\frac{4 V}{\pi r^{2}}+\frac{2 V}{r^{2}}$
$\Rightarrow 2 \pi r=\frac{4 . \pi r^{2} l}{2 \pi r^{2}}+\frac{2}{r^{2}} \cdot \frac{1}{2} \pi r^{2} l$
$\Rightarrow \frac{l}{2 r}=\frac{\pi}{\pi+2}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.