Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A glass convex lens is of refractive index $1 \cdot 55$ with both faces of same radius of curvature. What will be the radius of curvature if focal length is to be $20 \mathrm{~cm}$ ?
PhysicsExperimental PhysicsMHT CETMHT CET 2020 (15 Oct Shift 2)
Options:
  • A $22 \mathrm{~cm}$
  • B $21 \mathrm{~cm}$
  • C $18 \mathrm{~cm}$
  • D $20 \mathrm{~cm}$
Solution:
2840 Upvotes Verified Answer
The correct answer is: $22 \mathrm{~cm}$
Lens maker's formula,
\(\frac{1}{\mathrm{f}}=(\mu-1)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)\)
Here, \(\mathrm{f}=20 \mathrm{~cm}, \mu=1.55, \mathrm{R}_{1}=\mathrm{R}, \mathrm{R}_{2}=-\mathrm{R}\)
\(\begin{aligned}
&\frac{1}{20}=(1.55-1)\left(\frac{1}{R}-\frac{1}{(-R)}\right) \text { or } \frac{1}{20}=0.55 \times \frac{2}{R} \\
&\Rightarrow R=1.1 \times 20=22 \mathrm{~cm}
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.