Search any question & find its solution
Question:
Answered & Verified by Expert
A great physicist of this century (P.A.M. Dirac) loved playing with numerical values of Fundamental constants of nature. This led him to an interesting observation. Dirac found that from the basic constants of atomic physics $(c, e$, mass of electron, mass of proton) and the gravitational constant $\mathrm{G}$, he could arrive at a number with the dimension of time. Further, it was a very large number, its magnitude being close to the present estimate on the age of the universe ( $\sim 15$ /billion years). From the table of fundamental constants in this book, try to see if you too can construct this number (or any other interesting number you can think of ). If its coincidence with the age of the universe were significant, what would this imply for the constancy of fundamental constants?
Solution:
2174 Upvotes
Verified Answer
Using basic constants such as speed of light (c), charge on electron $(e)$, mass of electron $\left(\mathrm{m}_e\right)$, mass of proton $\left(\mathrm{m}_v\right)$ and gravitational constant $(\mathrm{G})$, we can construct the quantity,
$$
\tau=\left(\frac{e^2}{4 \pi \varepsilon_0}\right)^2 \times \frac{1}{m_p m_e^2 c^3 \mathrm{G}}
$$
$$
\begin{aligned}
\text { Now }\left[\frac{e^2}{4 \pi \varepsilon_0}\right] &=\left[\frac{1}{4 \pi \varepsilon_0} \frac{e^2}{r^2} r^2\right]=\left[\mathrm{Fr}^2\right] \\
&=\left[\mathrm{MLT}^{-2} \cdot \mathrm{L}^2\right]=\left[\mathrm{ML}^3 \mathrm{~T}^{-2}\right] \\
\therefore[\tau] &=\frac{\left[\mathrm{ML}^3 \mathrm{~T}^{-2}\right]^2}{[\mathrm{M}][\mathrm{M}]^2\left[\mathrm{LT}^{-1}\right]^3\left[\mathrm{M}^{-1} \mathrm{~L}^3 \mathrm{~T}^{-2}\right]}=[\mathrm{T}]
\end{aligned}
$$
Clearly, the quantity $\tau$ has the dimensions of time.
Put $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{~kg}^{-2}$,
$$
\begin{aligned}
&c=3 \times 10^8 \mathrm{~m} / \mathrm{s} \\
&e=1.6 \times 10^{-19} \mathrm{C}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} \\
&\mathrm{~m}=1.67 \times 10^{-27} \mathrm{~kg} \\
&\text { and } \frac{1}{4 \pi \varepsilon_0}=9 \times 10^9 \mathrm{Nm}^2 \mathrm{C}^2 \\
&\therefore \tau=\frac{\left[9 \times 10^9 \times\left(1.6 \times 10^{-19}\right)^2\right]^2}{1.67 \times 10^{-27} \times\left(9.1 \times 10^{-31}\right)^2 \times\left(3 \times 10^8\right)^3 \times 6.67 \times 10^{-11}}
\end{aligned}
$$
$$
\begin{aligned}
&=2.13 \times 10^{16} \mathrm{~s} \\
&=\frac{2.13 \times 10^{16}}{3.156 \times 10^7} \text { years }=0.667 \times 10^9 \text { years. } \\
&=0.667 \text { billion years. }
\end{aligned}
$$
This time is slightly less than the age of the universe ( $\approx 15$ billion years). It implies that the values of the basic constants of physics should change with time because the age of the universe increases with time.
$$
\tau=\left(\frac{e^2}{4 \pi \varepsilon_0}\right)^2 \times \frac{1}{m_p m_e^2 c^3 \mathrm{G}}
$$
$$
\begin{aligned}
\text { Now }\left[\frac{e^2}{4 \pi \varepsilon_0}\right] &=\left[\frac{1}{4 \pi \varepsilon_0} \frac{e^2}{r^2} r^2\right]=\left[\mathrm{Fr}^2\right] \\
&=\left[\mathrm{MLT}^{-2} \cdot \mathrm{L}^2\right]=\left[\mathrm{ML}^3 \mathrm{~T}^{-2}\right] \\
\therefore[\tau] &=\frac{\left[\mathrm{ML}^3 \mathrm{~T}^{-2}\right]^2}{[\mathrm{M}][\mathrm{M}]^2\left[\mathrm{LT}^{-1}\right]^3\left[\mathrm{M}^{-1} \mathrm{~L}^3 \mathrm{~T}^{-2}\right]}=[\mathrm{T}]
\end{aligned}
$$
Clearly, the quantity $\tau$ has the dimensions of time.
Put $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{~kg}^{-2}$,
$$
\begin{aligned}
&c=3 \times 10^8 \mathrm{~m} / \mathrm{s} \\
&e=1.6 \times 10^{-19} \mathrm{C}, \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} \\
&\mathrm{~m}=1.67 \times 10^{-27} \mathrm{~kg} \\
&\text { and } \frac{1}{4 \pi \varepsilon_0}=9 \times 10^9 \mathrm{Nm}^2 \mathrm{C}^2 \\
&\therefore \tau=\frac{\left[9 \times 10^9 \times\left(1.6 \times 10^{-19}\right)^2\right]^2}{1.67 \times 10^{-27} \times\left(9.1 \times 10^{-31}\right)^2 \times\left(3 \times 10^8\right)^3 \times 6.67 \times 10^{-11}}
\end{aligned}
$$
$$
\begin{aligned}
&=2.13 \times 10^{16} \mathrm{~s} \\
&=\frac{2.13 \times 10^{16}}{3.156 \times 10^7} \text { years }=0.667 \times 10^9 \text { years. } \\
&=0.667 \text { billion years. }
\end{aligned}
$$
This time is slightly less than the age of the universe ( $\approx 15$ billion years). It implies that the values of the basic constants of physics should change with time because the age of the universe increases with time.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.