Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A ladder of length $17 \mathrm{~m}$ rests with one end against a vertical wall and the other on the level ground. If the lower end slips away at the rate of $1 \mathrm{~m} / \mathrm{sec}$., then when it is $8 \mathrm{~m}$ away from the wall, its upper end is coming down at the rate of
MathematicsApplication of DerivativesMHT CETMHT CET 2023 (10 May Shift 1)
Options:
  • A $\frac{5}{8} \mathrm{~m} / \mathrm{sec}$.
  • B $\frac{8}{15} \mathrm{~m} / \mathrm{sec}$.
  • C $\frac{-8}{15} \mathrm{~m} / \mathrm{sec}$.
  • D $\frac{15}{8} \mathrm{~m} / \mathrm{sec}$.
Solution:
1341 Upvotes Verified Answer
The correct answer is: $\frac{8}{15} \mathrm{~m} / \mathrm{sec}$.


In $\triangle \mathrm{ABC}, \mathrm{AC}$ represents ladder
$\mathrm{AB} \rightarrow$ vertical wall
Let $\mathrm{AB}=x, \mathrm{BC}=y$
$\therefore \quad \angle \mathrm{ABC}=90^{\circ}$
By Pythagoras theorem,
$\begin{aligned}
& \mathrm{AB}^2+\mathrm{BC}^2=\mathrm{AC}^2 \\
& \Rightarrow x^2+y^2=17^2 \\
& \Rightarrow x^2=289-y^2 ... (i)\\
& \Rightarrow x^2=289-64 \\
& \Rightarrow x^2=225 \\
& \Rightarrow x=15 \mathrm{~m}
\end{aligned}$
Consider equation (i),
$x^2=289-y^2$
Differentiating w.r.t. t, we get
$\begin{aligned}
& 2 x \frac{\mathrm{d} x}{\mathrm{dt}}=-2 y \frac{\mathrm{d} y}{\mathrm{dt}} \\
& \Rightarrow 15 \frac{\mathrm{d} x}{\mathrm{dt}}=-8(1) \\
& \Rightarrow \frac{\mathrm{d} x}{\mathrm{dt}}=\frac{-8}{15} \mathrm{~m} / \mathrm{s}
\end{aligned}$
Negative sign shows that the ladder is moving down. i.e., vertical length is decreasing
$\therefore \quad$ Upper end is coming down at the rate of $\frac{8}{15} \mathrm{~m} / \mathrm{s}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.