Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A light balloon filled with helium of density $\rho_{\mathrm{He}}$ is tied to a long light string of length $\ell$ and the string is attached to the ground. If the balloon is displaced slightly in the horizontal direction from the equilibrium and released then.
PhysicsOscillationsKVPYKVPY 2016 (SB/SX)
Options:
  • A The ballon undergoes simple harmonic motion with period $2 \pi \sqrt{\left(\frac{\rho_{\text {air }}}{\rho_{\text {air }}-\rho_{\text {He }}}\right) \frac{\ell}{g}}$
  • B The ballon undergoes simple harmonic motion with period $2 \pi \sqrt{\left(\frac{\rho_{\text {air }}-\rho_{\text {He }}}{\rho_{\text {air }}}\right) \frac{\ell}{g}}$
  • C The ballon undergoes simple harmonic motion with period $2 \pi \sqrt{\left(\frac{\rho_{\mathrm{He}}}{\rho_{\text {air }}-\rho_{\mathrm{He}}}\right) \frac{\ell}{\mathrm{g}}}$
  • D The ballon undergoes conical oscillations with period $2 \pi \sqrt{\left(\frac{\rho_{\text {air }}+\rho_{\text {He }}}{\rho_{\text {air }}-\rho_{\text {He }}}\right) \frac{\ell}{g}}$
Solution:
2993 Upvotes Verified Answer
The correct answer is: The ballon undergoes simple harmonic motion with period $2 \pi \sqrt{\left(\frac{\rho_{\mathrm{He}}}{\rho_{\text {air }}-\rho_{\mathrm{He}}}\right) \frac{\ell}{\mathrm{g}}}$


$$
\tau_{0}=\mathrm{V}\left(\rho_{\mathrm{Air}}-\rho_{\mathrm{He}}\right) \mathrm{g} \ell \sin \theta
$$
For small angular displacement $(\theta)$
$$
\begin{array}{l}
\tau_{0}=\mathrm{V}\left(\rho_{\mathrm{Air}}-\rho_{\mathrm{He}}\right) \mathrm{g} \ell \theta \\
\mathrm{I} \alpha=\mathrm{V}\left[\rho_{\mathrm{Air}}-\rho_{\mathrm{He}}\right] \mathrm{g} \ell \theta \\
\rho_{\mathrm{He}} \mathrm{V} \ell^{2} \alpha=\mathrm{V}\left[\rho_{\mathrm{Air}}-\rho_{\mathrm{He}}\right] \ell \theta \mathrm{g} \\
\alpha=\left[\frac{\rho_{\mathrm{Air}}-\rho_{\mathrm{He}}}{\rho_{\mathrm{He}}}\right] \frac{\mathrm{g}}{\ell} \theta \\
\omega=\sqrt{\left(\frac{\rho_{\mathrm{Air}}-\rho_{\mathrm{He}}}{\rho_{\mathrm{He}}}\right) \frac{\mathrm{g}}{\ell}} \\
=2 \pi \sqrt{\frac{\ell}{\mathrm{g}} \frac{\rho_{\mathrm{He}}}{\left(\rho_{\mathrm{Air}}-\rho_{\mathrm{He}}\right)}}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.