Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A long solenoid is carrying a current $I=I_0 \sin (\omega t)$, having $N$ turns per unit length and radius $R$. A square loop is placed inside the solenoid with its plane perpendicular to the solenoid axis, and its corners touching the solenoid. Now the emf induced in the square coil.
PhysicsElectromagnetic InductionAP EAMCETAP EAMCET 2022 (06 Jul Shift 2)
Options:
  • A $\mu_0 N I_0 R^2 \sin (\omega t)$
  • B $2 \mu_0 N l_0 R^2 \sin (\omega t)$
  • C $2 \mu_0 N I_0 \dot{R}^2 \omega \cos (\omega t)$
  • D $\mu_0 N I_0 R^2 \pi \omega \cos (\omega t)$
Solution:
2024 Upvotes Verified Answer
The correct answer is: $2 \mu_0 N I_0 \dot{R}^2 \omega \cos (\omega t)$
Given, $I=I_0 \sin \omega t$
Magnetic field inside the solenoid, $B=\mu_0 N I$
$$
\Rightarrow \quad B=\mu_0 N I_0 \sin \omega t
$$
When side of square loop be $l$, then
$$
\begin{array}{rlrl}
& & 4 l & =2 \pi R \\
\Rightarrow \quad & l & =\frac{\pi R}{2}
\end{array}
$$
Area of square loop, $A=l^2$
$$
=\left(\frac{\pi R}{2}\right)^2=\frac{\pi^2 R^2}{4}
$$
Magnetic flux linked with square loop,
$$
\begin{aligned}
\phi & =B A \\
& =\mu_0 N I_0 \sin \omega t \times \frac{\pi^2 R^2}{4} \\
\phi & =\frac{\mu_0 \pi^2 R^2 N I_0 \sin \omega t}{4}
\end{aligned}
$$
Induced emf in the square coil, $e=\frac{d \phi}{d t}$
$$
\begin{aligned}
& =\frac{d}{d t} \frac{\mu_0 \pi^2 R^2 N I_0 \sin \omega t}{4} \\
& =\frac{\mu_0 \pi^2 R^2 N I_0 \omega \cos \omega t}{4} \quad\left(\because \frac{\pi^2}{4}=246\right) \\
& =2,46 \mu_0 R^2 N I_0 \omega \cos \omega t
\end{aligned}
$$
Which is closest to the value given in option (c).

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.