Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A loop carrying current $\mathrm{I}$ has the shape of a regular polygon of $\mathrm{n}$ sides. If $\mathrm{R}$ is the distance from the centre to any vertex, then the magnitude of the magnetic induction vector $\vec{B}$ at the centre of the loop is -
PhysicsMagnetic Effects of CurrentKVPYKVPY 2012 (SB/SX)
Options:
  • A $\mathrm{n} \frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{R}} \tan \frac{\pi}{\mathrm{n}}$
  • B $\frac{\mu_{0} I}{2 R}$
  • C $\mathrm{n} \frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{R}} \tan \frac{2 \pi}{\mathrm{n}}$
  • D $\frac{\mu_{0} \mathrm{I}}{\pi \mathrm{R}} \tan \frac{\pi}{\mathrm{n}}$
Solution:
2218 Upvotes Verified Answer
The correct answer is: $\mathrm{n} \frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{R}} \tan \frac{\pi}{\mathrm{n}}$


$\begin{aligned} \mathrm{B}_{\text {net }} &=\mathrm{n} \times \mathrm{B}_{1} \\ &=\mathrm{n} \cdot \frac{\mu_{0}}{4 \pi} \cdot \frac{\mathrm{I}}{\mathrm{R} \cos \frac{\pi}{\mathrm{n}}} 2 \sin \frac{\pi}{\mathrm{n}} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.