Search any question & find its solution
Question:
Answered & Verified by Expert
A magnetic dipole is under the influence of two orthogonal magnetic fields, $B_1=0.5 \times 10^{-3} \mathrm{~T}$ and $B_2=0.866 \times 10^{-3} \mathrm{~T}$. If the dipole comes to stable equilibrium at an angle $\theta$ with respect to $B_2$ field, then the value of $\theta$ is
Options:
Solution:
1354 Upvotes
Verified Answer
The correct answer is:
$30^{\circ}$
From tangent law, we have, $m B_2 \sin \theta=m B_2 \sin \left(90^{\circ}-\theta\right)$

$$
\begin{aligned}
\Rightarrow \quad \tan \theta=\frac{B_2}{B_2} & =\frac{0.5 \times 10^{-3}}{0.866 \times 10^{-3}} \\
=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} & =\frac{1}{\sqrt{3}} \\
\tan \theta & =\tan 30^{\circ} \\
\theta \quad \theta & =30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad \tan \theta=\frac{B_2}{B_2} & =\frac{0.5 \times 10^{-3}}{0.866 \times 10^{-3}} \\
=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} & =\frac{1}{\sqrt{3}} \\
\tan \theta & =\tan 30^{\circ} \\
\theta \quad \theta & =30^{\circ}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.