Search any question & find its solution
Question:
Answered & Verified by Expert
A man of height \(2 \mathrm{~m}\) walks at a uniform speed of \(7 \mathrm{~m} / \mathrm{min}\) away from a lamp post of height \(9 \mathrm{~m}\). The rate \((\mathrm{m} / \mathrm{min})\) at which the length of his shadow increases is
Options:
Solution:
2208 Upvotes
Verified Answer
The correct answer is:
2
Let \(A B\) be the lamp-post and \(P Q\) the man, \(C P\) be his shadow at time \(t\).
Let \(A P={ }^` x, P C=y\), Also \(A B=9 \mathrm{~m}, P Q=2 \mathrm{~m}\)
Now, \(\triangle C A B\) and \(\triangle C P Q\) are equiangular and hence similar.

\(\begin{aligned}
& \therefore \quad \frac{P C}{A C}=\frac{P Q}{A B} \\
& \Rightarrow \quad \frac{y}{x+y}=\frac{2}{9} \\
& \Rightarrow \quad 9 y=2 x+2 y \\
& \Rightarrow \quad 7 y=2 x \\
& \Rightarrow \quad x=\frac{7}{2} y \\
& \Rightarrow \quad \frac{d x}{d t}=\frac{7}{2} \frac{d y}{d t} \text { (differentiating w.r.t. } t \text {) } \\
& \text { But } \quad \frac{d x}{d t}=7 \mathrm{~m} / \mathrm{min} \\
& \therefore \quad 7=\frac{7}{2} \frac{d y}{d t} \\
& \Rightarrow \quad \frac{d y}{d t}=2 \mathrm{~m} / \mathrm{min}
\end{aligned}\)
\(\therefore\) Length of shadow is increases at \(2 \mathrm{~m} / \mathrm{min}\).
Let \(A P={ }^` x, P C=y\), Also \(A B=9 \mathrm{~m}, P Q=2 \mathrm{~m}\)
Now, \(\triangle C A B\) and \(\triangle C P Q\) are equiangular and hence similar.

\(\begin{aligned}
& \therefore \quad \frac{P C}{A C}=\frac{P Q}{A B} \\
& \Rightarrow \quad \frac{y}{x+y}=\frac{2}{9} \\
& \Rightarrow \quad 9 y=2 x+2 y \\
& \Rightarrow \quad 7 y=2 x \\
& \Rightarrow \quad x=\frac{7}{2} y \\
& \Rightarrow \quad \frac{d x}{d t}=\frac{7}{2} \frac{d y}{d t} \text { (differentiating w.r.t. } t \text {) } \\
& \text { But } \quad \frac{d x}{d t}=7 \mathrm{~m} / \mathrm{min} \\
& \therefore \quad 7=\frac{7}{2} \frac{d y}{d t} \\
& \Rightarrow \quad \frac{d y}{d t}=2 \mathrm{~m} / \mathrm{min}
\end{aligned}\)
\(\therefore\) Length of shadow is increases at \(2 \mathrm{~m} / \mathrm{min}\).
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.