Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A metal ball of mass $2 \mathrm{~kg}$ moving with a speed of $10 \mathrm{~ms}^{-1}$ had a head-on collision
with a stationary ball of mass $3 \mathrm{~kg}$. If after collision, both the balls move together,
then the loss in kinetic energy due to collision is
PhysicsCenter of Mass Momentum and CollisionMHT CETMHT CET 2020 (12 Oct Shift 1)
Options:
  • A $60 \mathrm{~J} .$
  • B $100 \mathrm{~J} .$
  • C $140 \mathrm{~J} .$
  • D $40 \mathrm{~J} .$
Solution:
1480 Upvotes Verified Answer
The correct answer is: $60 \mathrm{~J} .$
Apply conservation of momentum,
$$
\begin{array}{l}
\mathrm{m}_{1} \mathrm{v}_{1}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v} \\
\mathrm{v}=\frac{\mathrm{m}_{1} \mathrm{v}_{1}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}
\end{array}
$$
Here $\mathrm{v}_{1}=36 \mathrm{~km} / \mathrm{hr}=10 \mathrm{~m} / \mathrm{s}$,
$$
\begin{array}{l}
\mathrm{m}_{1}=2 \mathrm{~kg}, \mathrm{~m}_{2}=3 \mathrm{~kg} \\
\mathrm{v}=\frac{10 \times 2}{5}=4 \mathrm{~m} / \mathrm{s}
\end{array}
$$
K.E. (initial) $=\frac{1}{2} \times 2 \times(10)^{2}=100 \mathrm{~J}$
K.E. (Final) $=\frac{1}{2} \times(3+2) \times(4)^{2}=40 \mathrm{~J}$
Loss in K.E. $=100-40=60 \mathrm{~J}$
Alternatively use the formula
$-\Delta \mathrm{E}_{\mathrm{k}}=\frac{1}{2} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)^{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.