Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A metal disc of radius : 'R' rorates with an angular velocity ' $\omega$ ' 'about an axis perpendicular to its plane passing through its centre in a magnetic' field of induction ' $\mathrm{B}$ ' acting perpendicular to the plane of the disc. The magnitude of induced. e.m.f. between the rim and axis of the disc is
PhysicsElectromagnetic InductionMHT CETMHT CET 2023 (13 May Shift 2)
Options:
  • A $\pi \mathrm{BR}^2$
  • B $\frac{2 \pi^2 \mathrm{BR}^2}{\omega}$
  • C $\pi \mathrm{BR}^2 \omega$
  • D $\frac{\mathrm{BR}^2 \omega}{2}$
Solution:
1994 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{BR}^2 \omega}{2}$
Induced e.m.f.,
$\mathrm{e}=\frac{-\mathrm{d} \phi}{\mathrm{dt}}=-\frac{\mathrm{d}(\mathrm{BA})}{\mathrm{dt}}$
$=-\mathrm{B} \frac{\mathrm{dA}}{\mathrm{dt}}$
$\ldots .(\because \mathrm{B}=$ constant $)$
Area swept between axis and the rim, $\mathrm{dA}=\pi \mathrm{R}^2$ Time during which the change in flux taking place, $\mathrm{dt}=\frac{2 \pi}{\omega}$
$\therefore \quad \mathrm{e}=\frac{-\mathrm{B} \pi \mathrm{R}^2}{2 \pi / \omega}=\frac{-\mathrm{B} \omega \mathrm{R}^2}{2}$
$\therefore \quad|\mathrm{e}|=\frac{\mathrm{B} \omega \mathrm{R}^2}{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.