Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A metal sphere of mass ' $m$ ' and density ' $\sigma_1$ ' falls with terminal velocity through a container containing liquid. The density of liquid is ' $\sigma_2$ '. The viscous force acting on the sphere is
PhysicsMechanical Properties of FluidsMHT CETMHT CET 2023 (10 May Shift 2)
Options:
  • A $m g\left(1+\frac{\sigma_2}{\sigma_1}\right)$
  • B $m g\left(1-\frac{\sigma_1}{\sigma_2}\right)$
  • C $\operatorname{mg}\left(1-\frac{\sigma_2}{\sigma_1}\right)$
  • D $\operatorname{mg}\left(1+\frac{\sigma_1}{\sigma_2}\right)$
Solution:
2492 Upvotes Verified Answer
The correct answer is: $\operatorname{mg}\left(1-\frac{\sigma_2}{\sigma_1}\right)$
Given: Mass of sphere $=\mathrm{m}$, Density of sphere $=\sigma_1$, Density of liquid $=\sigma_2$.
$\mathrm{At}=\mathrm{v}=\mathrm{v}_{\mathrm{t}}$,
Weight of sphere $(\mathrm{W})=$ Viscous Force $\left(\mathrm{F}_{\mathrm{V}}\right)+$ Buoyant Force due to the medium $\left(\mathrm{F}_{\mathrm{B}}\right)$
$\begin{aligned}
\Rightarrow \mathrm{W} & =\mathrm{F}_{\mathrm{V}}+\mathrm{F}_{\mathrm{B}} \\
\mathrm{Mg} & =\mathrm{F}_{\mathrm{V}}+\left(\sigma_2 \mathrm{~V}\right) \mathrm{g} \quad \ldots .(\because \mathrm{m}=\mathrm{D} . \mathrm{V}) \\
\therefore \quad \mathrm{F}_{\mathrm{V}} & =\mathrm{mg}-\left(\sigma_2 \mathrm{~V}\right) \mathrm{g} \\
& =\mathrm{mg}\left[1-\frac{\sigma_2 \mathrm{~V}}{\mathrm{~m}}\right] \\
& =\mathrm{mg}\left[1-\frac{\sigma_2 \mathrm{~V}}{\sigma_1 \mathrm{~V}}\right] \\
& =\mathrm{mg}\left[1-\frac{\sigma_2}{\sigma_1}\right]
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.