Search any question & find its solution
Question:
Answered & Verified by Expert
A metal sphere of radius 'R' cm is charged with $4 \pi \mu \mathrm{C}$ situated in air. If ' $\sigma$ ' is surface density of charge , 'E' is electric intensity at a distance 'r' from the centre of sphere then 'r' is $\left(\epsilon_{0}=\right.$ permittivity of free space)
Options:
Solution:
2625 Upvotes
Verified Answer
The correct answer is:
$\mathrm{R} \sqrt{\frac{\sigma}{\epsilon_{0} \mathrm{E}}}$
$\mathrm{E}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{q}}{\mathrm{r}^{2}} ; \quad \sigma=\frac{\mathrm{q}}{4 \pi \mathrm{R}^{2}}$
$\therefore \mathrm{q}=4 \pi \mathrm{R}^{2} \sigma$
$\therefore \mathrm{E}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{4 \pi \mathrm{R}^{2} \sigma}{\mathrm{r}^{2}}$
$\therefore r^{2}=\frac{R^{2} \sigma}{\epsilon_{0} E} \quad \therefore r=R \sqrt{\frac{\sigma}{\epsilon_{0} E}}$
$\therefore \mathrm{q}=4 \pi \mathrm{R}^{2} \sigma$
$\therefore \mathrm{E}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{4 \pi \mathrm{R}^{2} \sigma}{\mathrm{r}^{2}}$
$\therefore r^{2}=\frac{R^{2} \sigma}{\epsilon_{0} E} \quad \therefore r=R \sqrt{\frac{\sigma}{\epsilon_{0} E}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.