Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A metal sphere of radius 'R', density ' $\varrho_{1}$ ' moves with terminal velocity ' $\mathrm{v}_{1}$ ' through
a liquid of density ' $\sigma^{\prime}$. Another sphere of same radius but of density ' $\varrho_{2}$ ' moves
through same liquid. Its terminal velocity will be
PhysicsMechanical Properties of FluidsMHT CETMHT CET 2020 (20 Oct Shift 1)
Options:
  • A $\left[\frac{\varrho_{1}-\varrho_{2}}{\sigma}\right] \mathrm{v}_{1}$
  • B $\left[\frac{\varrho_{2}+\sigma}{\varrho_{1}+\sigma}\right] \mathrm{v}_{1}$
  • C $\left[\frac{\varrho_{1}+\varrho_{2}}{\sigma}\right] \mathrm{v}_{1}$
  • D $\left[\frac{\mathrm{e}_{2}-\sigma}{\mathrm{e}_{1}-\sigma}\right] \mathrm{v}_{1}$
Solution:
2942 Upvotes Verified Answer
The correct answer is: $\left[\frac{\mathrm{e}_{2}-\sigma}{\mathrm{e}_{1}-\sigma}\right] \mathrm{v}_{1}$
$6 \pi \eta R v_{1}=\frac{4}{3} \pi R^{3}(\rho_{1}-\sigma)$
$6 \pi \eta R v_{2}=\frac{4}{3} \pi R^{3}\left(\rho_{2}-\sigma\right)$
$\therefore \frac{v_{2}}{v_{1}}=\frac{\rho_{2}-\sigma}{\rho_{1}-\sigma}$
$v_{2}=\frac{\rho_{2}-\sigma}{\rho_{1}-\sigma} v_{1}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.