Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A metallic wire with tension $T$ and at temperature $30^{\circ} \mathrm{C}$ vibrates with its fundamental frequency of $1 \mathrm{kHz}$. The same wire with the same tension but at $10^{\circ} \mathrm{C}$ temperature vibrates with a fundamental frequency of $1.001 \mathrm{kHz}$. The coefficient of linear expansion of the wire is
PhysicsThermal Properties of MatterJEE Main
Options:
  • A $2 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
  • B $1.5 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
  • C $1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
  • D $0.5 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
Solution:
2634 Upvotes Verified Answer
The correct answer is: $0.5 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
Frequency of wire $n=\frac{1}{2 l} \frac{\sqrt{T}}{m}$ $m=$ mass per unit length
In both the condition same wire is kept same tension.
So,
$$
\begin{aligned}
\frac{n_1}{n_2}=\frac{l_2}{l_1} \Rightarrow \frac{1}{1.001} & =\frac{l_2}{l_1} \\
l_2 & =\frac{l_1}{1.001}
\end{aligned}
$$
Fall in temperature $\Delta t=30-10=20^{\circ} \mathrm{C}$
$$
\begin{aligned}
l_2 & =l_1(1-\alpha \Delta t) \\
\frac{l_1}{1.001} & =l_1(1-\alpha \times 20) \\
1-\alpha \times 20 & =\frac{1}{1.001}=\frac{0.001}{1.001} \\
\alpha=\frac{1}{1001 \times 20} & =0.5 \times 10^{-4} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.