Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A molecule is travelling in air at $300 \mathrm{~K}$ and $1 \mathrm{~atm}$, and the radius of the molecule is $0.6 \times 10^{-10} \mathrm{~m}$. Calculate the approx. mean free path of the molecule. (The number density is $2.44 \times 10^{25}$ molecules $/ \mathrm{m}^3$ )
PhysicsKinetic Theory of GasesTS EAMCETTS EAMCET 2021 (06 Aug Shift 1)
Options:
  • A $\frac{0.2}{\pi} \times 10^{-5} \mathrm{~m}$
  • B $\frac{0.3}{\pi} \times 10^{-5} \mathrm{~m}$
  • C $\frac{0.4}{\pi} \times 10^{-5} \mathrm{~m}$
  • D $\frac{0.1}{\pi} \times 10^{-5} \mathrm{~m}$
Solution:
1850 Upvotes Verified Answer
The correct answer is: $\frac{0.2}{\pi} \times 10^{-5} \mathrm{~m}$
Given that, temperature, $T=300 \mathrm{~K}$
Pressure, $p=1$ atm $=1.01 \times 10^5 \mathrm{~N} / \mathrm{m}^2$
Radius, $r=0.6 \times 10^{-10} \mathrm{~m}$, diameter $d=1.2 \times 10^{-10} \mathrm{~m}$
Number density, $\rho=2.44 \times 10^{25}$ molecules $/ \mathrm{m}^3$
Boltzmann constant, $K=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Now, mean free path, $\lambda=\frac{K T}{\sqrt{2} \pi d^2 p}$
$$
\begin{aligned}
\lambda & =\frac{1.38 \times 10^{-23} \times 300}{1.414 \pi \times\left(1.2 \times 10^{-10}\right)^2 \times 1.01 \times 10^5} \\
& =\frac{0.2}{\pi} \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.