Search any question & find its solution
Question:
Answered & Verified by Expert
A monochromatic radiation of wavelength $\lambda$ is incident on a hydrogen sample in ground state. The sample subsequently emits radiation of six different wavelengths, then the value of $\lambda$ is
[Use ch $=1242 \mathrm{eV}-\mathrm{m}$ ]
Options:
[Use ch $=1242 \mathrm{eV}-\mathrm{m}$ ]
Solution:
1806 Upvotes
Verified Answer
The correct answer is:
97.4 nm
Number of line emitted $=6, n_i=1, n_f=4$
$\begin{aligned}
\frac{n(n-1)}{2} & =6 \\
n^2-n-12 & =0 \\
(n-4)(n+3) & =0 \\
n=4, n & =-3 \quad \text{(Not possible)}
\end{aligned}$
Using, $\frac{1}{\lambda}=R \sqrt{\left(\frac{1}{n_i^2}-\frac{1}{n_f^2}\right)}$
$\frac{1}{\lambda}=R\left(\frac{1}{1^2}-\frac{1}{4^2}\right)=R \frac{15}{16}$
where, $R=1.09 \times 10^7 \mathrm{~m}^{-1}$
$\lambda=\frac{16}{15} \times \frac{1}{1.09 \times 10^7}=97.4 \mathrm{~nm}$
$\begin{aligned}
\frac{n(n-1)}{2} & =6 \\
n^2-n-12 & =0 \\
(n-4)(n+3) & =0 \\
n=4, n & =-3 \quad \text{(Not possible)}
\end{aligned}$
Using, $\frac{1}{\lambda}=R \sqrt{\left(\frac{1}{n_i^2}-\frac{1}{n_f^2}\right)}$
$\frac{1}{\lambda}=R\left(\frac{1}{1^2}-\frac{1}{4^2}\right)=R \frac{15}{16}$
where, $R=1.09 \times 10^7 \mathrm{~m}^{-1}$
$\lambda=\frac{16}{15} \times \frac{1}{1.09 \times 10^7}=97.4 \mathrm{~nm}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.