Search any question & find its solution
Question:
Answered & Verified by Expert
A mouse of mass \(\mathrm{m}\) jumps on the outside edge of a rotating ceiling fan of moment of inertia I and radius \(\mathrm{R}\). The fractional loss of angular velocity of the fan as a result is
Options:
Solution:
1628 Upvotes
Verified Answer
The correct answer is:
\(\frac{m R^2}{\mathrm{I}+\mathrm{mR}^2}\)
Hint : \(I \omega_0=\left(\mathrm{I}+\mathrm{mR}^2\right) \omega\)
\(\omega_0 \rightarrow\) Initial angular velocity
\(\omega=\frac{I \omega_0}{I+m R^2}\)
\(\omega \rightarrow\) Final angular velocity
So, \(\frac{\omega_0-\omega}{\omega_0}=I-\frac{I}{I+m R^2}=\frac{m R^2}{I+m R^2}\)
\(\omega_0 \rightarrow\) Initial angular velocity
\(\omega=\frac{I \omega_0}{I+m R^2}\)
\(\omega \rightarrow\) Final angular velocity
So, \(\frac{\omega_0-\omega}{\omega_0}=I-\frac{I}{I+m R^2}=\frac{m R^2}{I+m R^2}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.