Search any question & find its solution
Question:
Answered & Verified by Expert
A non-conducting body floats in a liquid at $20^{\circ} \mathrm{C}$ with $\frac{2}{3}$ of its volume immersed in the liquid. When liquid temperature is increased to $100^{\circ} \mathrm{C}, \frac{3}{4}$ of body's volume is immersed in the liquid. Then the coefficient of real expansion of the liquid is (neglecting the expansion of container of the liquid)
Options:
Solution:
1084 Upvotes
Verified Answer
The correct answer is:
$15.6 \times 10^{-4 \circ} \mathrm{C}^{-1}$
Coefficient of real expansion
$\begin{aligned}
& \gamma_R=\frac{V_2-V_1}{V_1\left(t_2-t_1\right)} \\
& \text { Here, } \quad V_2=\frac{3}{4}, V_1=\frac{2}{3} \\
& \text { and } \quad\left(t_2-t_1\right)=(100-20)=80^{\circ} \mathrm{C} \\
& \therefore \quad \gamma_R=\frac{\left(\frac{3}{4}-\frac{2}{3}\right)}{\frac{2}{3}(80)}=\frac{1}{640} \\
& =15.6 \times 10^{-4} \circ \mathrm{C}^{-1} \\
&
\end{aligned}$
$\begin{aligned}
& \gamma_R=\frac{V_2-V_1}{V_1\left(t_2-t_1\right)} \\
& \text { Here, } \quad V_2=\frac{3}{4}, V_1=\frac{2}{3} \\
& \text { and } \quad\left(t_2-t_1\right)=(100-20)=80^{\circ} \mathrm{C} \\
& \therefore \quad \gamma_R=\frac{\left(\frac{3}{4}-\frac{2}{3}\right)}{\frac{2}{3}(80)}=\frac{1}{640} \\
& =15.6 \times 10^{-4} \circ \mathrm{C}^{-1} \\
&
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.