Search any question & find its solution
Question:
Answered & Verified by Expert
A nucleus X emits a beta particle to produce a nucleus Y. If their atomic masses are $\mathrm{M}_{\mathrm{x}}$ and $\mathrm{M}_{\mathrm{y}}$ respectively, the maximum energy of the beta particle emitted is (where $m_{e}$ is the mass of an electron and $c$ is the velocity of light)
Options:
Solution:
1787 Upvotes
Verified Answer
The correct answer is:
$\left(M_{x}-M_{y}\right) \mathrm{c}^{2}$
Hint:

$\mathrm{m}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x}}-\mathrm{zm}_{\mathrm{e}}$
$\frac{\mathrm{m}_{\mathrm{y}}=\mathrm{M}_{\mathrm{y}}-(\mathrm{z}+1) \mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{x}}-\mathrm{m}_{\mathrm{y}}=\mathrm{M}_{\mathrm{x}}-\mathrm{M}_{\mathrm{y}}+\mathrm{m}_{\mathrm{e}}}$
$\mathrm{E}=\Delta \mathrm{mC}^{2}=\left(\mathrm{m}_{\mathrm{x}}-\mathrm{m}_{\mathrm{y}}-\mathrm{m}_{\mathrm{e}}\right) \mathrm{C}^{2}=\left(\mathrm{M}_{\mathrm{x}}-\mathrm{M}_{\mathrm{y}}\right) \mathrm{C}^{2}$

$\mathrm{m}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x}}-\mathrm{zm}_{\mathrm{e}}$
$\frac{\mathrm{m}_{\mathrm{y}}=\mathrm{M}_{\mathrm{y}}-(\mathrm{z}+1) \mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{x}}-\mathrm{m}_{\mathrm{y}}=\mathrm{M}_{\mathrm{x}}-\mathrm{M}_{\mathrm{y}}+\mathrm{m}_{\mathrm{e}}}$
$\mathrm{E}=\Delta \mathrm{mC}^{2}=\left(\mathrm{m}_{\mathrm{x}}-\mathrm{m}_{\mathrm{y}}-\mathrm{m}_{\mathrm{e}}\right) \mathrm{C}^{2}=\left(\mathrm{M}_{\mathrm{x}}-\mathrm{M}_{\mathrm{y}}\right) \mathrm{C}^{2}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.