Search any question & find its solution
Question:
Answered & Verified by Expert
(a) Obtain an expression for mutual inductance between a long straight wire and a square loop of side $a$ as shown in figure.

(b) Now assume that the straight wire carries a current of $50 \mathrm{~A}$ and the loop is moved to the right with a constant velocity $v=10 \mathrm{~ms}^{-1}$. Calculate the induced emf in the loop at the instant when $x=0.2 \mathrm{~m}$. Take $a=0.1 \mathrm{~m}$ and assume that the loop has a large resistance.

(b) Now assume that the straight wire carries a current of $50 \mathrm{~A}$ and the loop is moved to the right with a constant velocity $v=10 \mathrm{~ms}^{-1}$. Calculate the induced emf in the loop at the instant when $x=0.2 \mathrm{~m}$. Take $a=0.1 \mathrm{~m}$ and assume that the loop has a large resistance.
Solution:
2365 Upvotes
Verified Answer
As the magnetic field will be variable with distance from long straight wire, so the flux through square loop can be calculated by integration.

Let us assume a width $d r$ of the square loop at a distance $r$ from straight wire
$$
\begin{aligned}
B &=\frac{\mu_0 2 I}{4 \pi r} \\
\phi &=B a d r=\frac{\mu_0 2 I}{4 \pi r} a d r
\end{aligned}
$$
Total flux associated with square loop
$$
\begin{aligned}
\phi &=\int d \phi=\frac{\mu_0}{4 \pi} 2 I a \int_x^{x+a} \frac{d r}{r} \\
\text { or } \phi &=\frac{\mu_0}{4 \pi} 2 I d\left[\log _e r\right]_x^{x+a} \\
\text { or } \phi &=\frac{\mu_0}{4 \pi} 2 I a\left[\log _e \frac{x+a}{x}\right] \\
\text { or } \phi &=\frac{\mu_0 I a}{2 \pi} \log _e(1+a / x)
\end{aligned}
$$
(b) The square loop is moving right with a constant speed $v$, the instantaneous flux can be taken as
$$
\begin{aligned}
&\phi=\frac{\mu_0 I a}{2 \pi} \log _e(1+a / x) \\
&\text { Induced Emf } e=-\frac{d \phi}{d t}=-\frac{d \phi}{d x} \frac{d x}{d t}=-v \frac{d \phi}{d x} \\
&e=-\frac{\mu_0 I a v}{2 \pi} \frac{d \log _e(1+a / x)}{d x} \\
&e=-\frac{\mu_0 I a v}{2 \pi} \frac{1}{\left(1+\frac{a}{x}\right)^2}\left[-a / x^2\right] \\
&\text { or } e=\frac{\mu_0}{2 \pi} \frac{a^2 v}{x(x+a)} I \\
&\text { or } e=2 \times 10^{-7} \frac{[0.1]^2 10 \times 50}{0.2[0.2+0.1]}=1.67 \times 10^{-5} \mathrm{~V}
\end{aligned}
$$

Let us assume a width $d r$ of the square loop at a distance $r$ from straight wire
$$
\begin{aligned}
B &=\frac{\mu_0 2 I}{4 \pi r} \\
\phi &=B a d r=\frac{\mu_0 2 I}{4 \pi r} a d r
\end{aligned}
$$
Total flux associated with square loop
$$
\begin{aligned}
\phi &=\int d \phi=\frac{\mu_0}{4 \pi} 2 I a \int_x^{x+a} \frac{d r}{r} \\
\text { or } \phi &=\frac{\mu_0}{4 \pi} 2 I d\left[\log _e r\right]_x^{x+a} \\
\text { or } \phi &=\frac{\mu_0}{4 \pi} 2 I a\left[\log _e \frac{x+a}{x}\right] \\
\text { or } \phi &=\frac{\mu_0 I a}{2 \pi} \log _e(1+a / x)
\end{aligned}
$$
(b) The square loop is moving right with a constant speed $v$, the instantaneous flux can be taken as
$$
\begin{aligned}
&\phi=\frac{\mu_0 I a}{2 \pi} \log _e(1+a / x) \\
&\text { Induced Emf } e=-\frac{d \phi}{d t}=-\frac{d \phi}{d x} \frac{d x}{d t}=-v \frac{d \phi}{d x} \\
&e=-\frac{\mu_0 I a v}{2 \pi} \frac{d \log _e(1+a / x)}{d x} \\
&e=-\frac{\mu_0 I a v}{2 \pi} \frac{1}{\left(1+\frac{a}{x}\right)^2}\left[-a / x^2\right] \\
&\text { or } e=\frac{\mu_0}{2 \pi} \frac{a^2 v}{x(x+a)} I \\
&\text { or } e=2 \times 10^{-7} \frac{[0.1]^2 10 \times 50}{0.2[0.2+0.1]}=1.67 \times 10^{-5} \mathrm{~V}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.