Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A one microfarad condenser is charged to $50 \mathrm{~V}$. The charging battery is then disconnected and a $10 \mathrm{mH}$ coli is connected across the capacitor so that LC oscillations occur. What is the maximum current in the coil? Assume that the circuit contains no resistance.
PhysicsAlternating CurrentMHT CETMHT CET 2022 (07 Aug Shift 2)
Options:
  • A $0.75 \mathrm{~A}$
  • B $0.25 \mathrm{~A}$
  • C $0.50 \mathrm{~A}$
  • D $1.00 \mathrm{~A}$
Solution:
2045 Upvotes Verified Answer
The correct answer is: $0.50 \mathrm{~A}$

$\begin{aligned} & \frac{\mathrm{q}}{\mathrm{C}}=-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=(-\mathrm{L}) \frac{\mathrm{dq}}{\mathrm{dt}}=\frac{\mathrm{di}}{\mathrm{dq}} \Rightarrow \int_{\mathrm{Q}_0}^0 \mathrm{qdq}=(-\mathrm{LC}) \int_0^{\mathrm{i}} \max \mathrm{idi} \\ & \left.\Rightarrow \frac{\mathrm{q}^2}{2}\right|_{\mathrm{Q}_0} ^0=\left.(-\mathrm{LC}) \frac{\mathrm{i}^2}{2}\right|_0 ^{\mathrm{i}^{\mathrm{max}}} \Rightarrow 0-\mathrm{Q}_0^2=(-\mathrm{LC})\left(\mathrm{i}_{\max }{ }^2\right) \\ & \Rightarrow \mathrm{i}_{\max }=\frac{\mathrm{Q}_0}{\sqrt{\mathrm{LC}}}=\frac{\mathrm{CV}}{\sqrt{\mathrm{LC}}}=50 \sqrt{\frac{1 \times 10^{-6} \mathrm{~F}}{10 \times 10^{-3} \mathrm{H}}} \\ & =50 \times 10^{-2} \mathrm{~A} \\ & \Rightarrow \mathrm{i}=0.5 \mathrm{~A}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.