Search any question & find its solution
Question:
Answered & Verified by Expert
A particle carrying a charge to 100 times the charge on an electron is rotating per second in a circular path of radius $0.8 \mathrm{~m}$. The value of the magnetic field produced at the centre will be $\left(\mu_{0}=\right.$ permeabil ity for vacuum $)$
Options:
Solution:
2453 Upvotes
Verified Answer
The correct answer is:
$10^{-17} \mu_{0}$
Current, i $=\frac{q}{t}=100 \times \mathrm{e}$
$$
\begin{array}{l}
\text { Magnetic field, } \mathrm{B}_{\text {centre }}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r} \\
=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi \times 100 e}{r} \\
\frac{\mu_{0} \times 200 \times 1.6 \times 10^{-19}}{4 \times 0.8}=10^{-17} \mu_{0}
\end{array}
$$
$$
\begin{array}{l}
\text { Magnetic field, } \mathrm{B}_{\text {centre }}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r} \\
=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi \times 100 e}{r} \\
\frac{\mu_{0} \times 200 \times 1.6 \times 10^{-19}}{4 \times 0.8}=10^{-17} \mu_{0}
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.