Search any question & find its solution
Question:
Answered & Verified by Expert
A particle is moving along $X$-axis with velocity $v=e^{-\beta x}$. At time $t=0$, the particle is located at $x=0$. The displacement of the particle as function of time is
Options:
Solution:
1255 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{\beta} \log [1+\beta t]$
Velocity of particle,
$v=e^{-\beta x}$
$\Rightarrow \quad \frac{d x}{d t}=e^{-\beta x}$
or $\quad \frac{d x}{e^{-\beta x}}=d t$
or $\quad e^{\beta x} d x=d t$

$\Rightarrow$ Integrating, we get
$\int_0^x e^{\beta x} d x=\int_0^t d t$
$\begin{aligned} & \Rightarrow \quad \frac{1}{\beta}\left[e^{\beta x}\right]_0^x=[t]_0^t \\ & \Rightarrow \quad \frac{1}{\beta}\left(e^{\beta x}-e^0\right)=t-0 \Rightarrow \frac{1}{\beta}\left(e^{\beta x}-1\right)=t\end{aligned}$
$e^{\beta x}=\beta t+1$
Taking log, we get
$\log \left(e^{\beta x}\right)=\log (\beta t+1)$
$\begin{array}{ll}\Rightarrow & \beta x=\log (\beta t+1) \\ \Rightarrow & x=\frac{1}{\beta} \cdot \log (\beta t+1)\end{array}$
So, displacement function for the particle is
$x=\frac{1}{\beta} \cdot \log (\beta t+1)$
$v=e^{-\beta x}$
$\Rightarrow \quad \frac{d x}{d t}=e^{-\beta x}$
or $\quad \frac{d x}{e^{-\beta x}}=d t$
or $\quad e^{\beta x} d x=d t$

$\Rightarrow$ Integrating, we get
$\int_0^x e^{\beta x} d x=\int_0^t d t$
$\begin{aligned} & \Rightarrow \quad \frac{1}{\beta}\left[e^{\beta x}\right]_0^x=[t]_0^t \\ & \Rightarrow \quad \frac{1}{\beta}\left(e^{\beta x}-e^0\right)=t-0 \Rightarrow \frac{1}{\beta}\left(e^{\beta x}-1\right)=t\end{aligned}$
$e^{\beta x}=\beta t+1$
Taking log, we get
$\log \left(e^{\beta x}\right)=\log (\beta t+1)$
$\begin{array}{ll}\Rightarrow & \beta x=\log (\beta t+1) \\ \Rightarrow & x=\frac{1}{\beta} \cdot \log (\beta t+1)\end{array}$
So, displacement function for the particle is
$x=\frac{1}{\beta} \cdot \log (\beta t+1)$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.