Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle is projected in air at an angle $\beta$ to a surface which itself is inclined at an angle $\alpha$ to the horizontal (figure).


(a) Find an expression of range on the plane surface (distance on the plane from the point of projection at which particle will hit the surface).
(b) Time of flight.
(c) $\beta$ at which range will be maximum.
PhysicsMotion In Two Dimensions
Solution:
2189 Upvotes Verified Answer
Consider a new cartesian coordinates in whcih $x$-axis is along inclined plane $O P$ and $O Y$ axis perpendicular to it as shown in figure. Consider the motion of projectile form OAP.


$$
\begin{aligned}
&a_y=-g \cos \alpha \\
&a_x=-g \sin \alpha \\
&\text { At } O \text { and } P, \\
&y=0 \\
&u_y=v_0 \sin \beta \\
&t=T
\end{aligned}
$$
where $T$ is time taken in reaching from point $O$ to point $P$.
(a) Considering motion along $O X$ axis :-
Given, $s_x=L_1, u_x=v_0 \cos \beta, a_x=-g \sin \alpha$
$$
\begin{aligned}
t=T=\frac{2 v_0 \sin \beta}{g \cos \alpha} \\
s_x=u_x t+\frac{1}{2} a_x t^2 \\
L=v_0 \cos \beta(T)+\frac{1}{2}(-g \sin \alpha) T^2 \\
L=& v_0 \cos \beta T-\frac{1}{2} g \sin \alpha T^2=T\left[v_0 \cos \beta-\frac{1}{2} g \sin \alpha T\right] \\
=& T\left[v_0 \cos \beta-\frac{1}{2} g \sin \alpha \times \frac{2 v_0 \sin \beta}{g \cos \alpha}\right] \\
=& \frac{2 v_0 \sin \beta}{g \cos \alpha}\left[v_0 \cos \beta-\frac{v_0 \sin \alpha \sin \beta}{\cos \alpha}\right] \\
=& \frac{2 v_0^2 \sin \beta}{g \cos { }^2 \alpha}[\cos \beta \cdot \cos \alpha-\sin \alpha \sin \beta]
\end{aligned}
$$
$$
L=\frac{2 v_0^2 \sin \beta}{g \cos ^2 \alpha} \cos (\alpha+\beta)
$$
(b) Considering motion along vertical upward direction perpendicular to $O X$ and motion of projectile along New $O Y$ axis :-
$$
s_y=0, u_{\mathrm{y}}=v_0 \sin \beta, a_y=-g \cos \alpha, t=T
$$
Applying equation,
$$
\begin{aligned}
&s_y=u_y t+\frac{1}{2} a_y t^2 \\
&0=v_0 \sin \beta T+\frac{1}{2}(-g \cos \alpha) T^2 \\
&0=v_0 \sin \beta T-\frac{g}{2} \cos \alpha(T)^2 \\
&T\left[v_0 \sin \beta-\frac{g \cos \alpha}{2} T\right]=0 \\
&\text { either } T=0 \text { or } v_0 \sin \beta-\frac{g T}{2} \cos \alpha=0 \\
&\frac{g T}{2} \cos \alpha=v_0 \sin \beta, T=\frac{2 v_0 \sin \beta}{g \cos \alpha}
\end{aligned}
$$
As $T=0$, corresponding to point $O$
Hence, $T=$ Time of flight $=\frac{2 v_0 \sin \beta}{g \cos \alpha}$
(c) For range $(L)$ will be maximum along new $O X$ axis from above relation.
Let $L$, it will be maximum when
$\sin \beta \cdot \cos (\alpha+\beta)$ should be maximum as $\alpha$ is constant angle of inclination of plane.
Consider
$$
\begin{aligned}
Z &=\sin \beta \cdot \cos (\alpha+\beta) \\
&=\sin \beta[\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta] \\
&=\frac{1}{2}\left[\cos \alpha \cdot \sin 2 \beta-2 \sin \alpha \cdot \sin ^2 \beta\right] \\
&=\frac{1}{2}[\sin 2 \beta \cdot \cos \alpha-\sin \alpha(1-\cos 2 \beta)] \\
z &=\frac{1}{2}[\sin 2 \beta \cdot \cos \alpha-\sin \alpha+\sin \alpha \cdot \cos 2 \beta] \\
&=\frac{1}{2}[\sin 2 \beta \cdot \cos \alpha+\cos 2 \beta \cdot \sin \alpha-\sin \alpha] \\
z &=\frac{1}{2}[\sin (2 \beta+\alpha)-\sin \alpha] \\
z \text { ismaximum, If } \\
\sin (2 \beta+\alpha)=1
\end{aligned}
$$
$$
\Rightarrow \quad \sin (2 \beta+\alpha)=\sin \frac{\pi}{2}
$$
So, $2 \beta+\alpha=\frac{\pi}{2}$
$$
\Rightarrow \beta=\left(\frac{\pi}{4}-\frac{\alpha}{2}\right) \text { radian }
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.