Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle moves from the point $(2.0 \hat{i}+4.0 \hat{j}) \mathrm{m},$ at $\mathrm{t}=0$,

with an initial velocity $(5.0 \hat{i}+4.0 \hat{j}) \mathrm{ms}^{-1} .$ It is acted upon by a constant force which produces a constant acceleration

$(4.0 \hat{i}+4.0 \hat{j}) \mathrm{ms}^{-2} .$ What is the distance of the particle

from the origin at time $2 \mathrm{~s} ?$
PhysicsMathematics in PhysicsJEE MainJEE Main 2019 (11 Jan Shift 2)
Options:
  • A $15 \mathrm{~m}$
  • B $20 \sqrt{2} \mathrm{~m}$
  • C $5 \mathrm{~m}$
  • D $10 \sqrt{2} \mathrm{~m}$
Solution:
1919 Upvotes Verified Answer
The correct answer is: $20 \sqrt{2} \mathrm{~m}$
As $\overrightarrow{\mathrm{S}}=\overrightarrow{\mathrm{ut}}+\frac{1}{2} \overrightarrow{\mathrm{a}} \mathrm{t}^{2}$

$\overrightarrow{\mathrm{S}}=(5 \hat{i}+4 \hat{j}) 2+\frac{1}{2}(4 \hat{i}+4 \hat{j}) 4$

$=10 \hat{i}+8 \hat{j}+8 \hat{i}+8 \hat{j}$

$\overrightarrow{\mathrm{r}}_{\mathrm{f}}-\overrightarrow{\mathrm{r}}_{\mathrm{i}}=18 \hat{\mathrm{i}}+16 \hat{\mathrm{j}}$

$\left[\mathrm{as} \overrightarrow{\mathrm{s}}=\right.$ change in position $\left.=\overrightarrow{\mathrm{r}}_{\mathrm{f}}-\overrightarrow{\mathrm{r}}_{\mathrm{i}}\right]$

$\overrightarrow{\mathrm{r}}_{\mathrm{r}}=20 \hat{\mathrm{i}}+20 \hat{\mathrm{j}}$

$\left|\overrightarrow{\mathrm{r}}_{\mathrm{r}}\right|=20 \sqrt{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.